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Ninety years have ellapsed since the Old Quantum Theory has emerged, and 

eighty three over the foundations of Modern Quantum Mechanics. Born in 

1901, Ruy Gustavo Couceiro da Costa soon became aware of the importance 

of Quantum Mechanics in Science, particularly in Chemistry. Such a vision 

has flurished ever since and its presence in the scientific realm is nowadays 

unquestionable: Physics, Chemistry, Biology, Astronomy, Engineering and even 

Philosophy, all such areas of knowledge reflect the importance of judgement 

in accordance with the quantum laws. This book is a result of a Symposium 

to honor the memory of Professsor Couceiro da Costa for his contribution to 

the development of Quantum Mechanics in Chemistry and Physics in Portugal.

A tribute to the memory of
Professor Couceiro da Costa



4. SPONTANEOUS SYMMETRY BR EAK ING IN QUANTUM

PHYS I C S 1

J. da Providência*

CFT, Department of Physics, University of Coimbra, Coimbra, Portugal

Following a classification due to Sir Rudolf Peierls, two possible types of
spontaneously broken symmetries are discussed, namely, spontaneously
broken symmetry of first kind, when a symmetric ground state is degener-
ate with an asymmetric one, and spontaneously broken symmetry of second
kind, when the ground state belongs to a representation of the relevant
symmetry group other than the identical one. Symmetry breaking approx-
imation is also considered. In this case, in order to take into account in a
simple manner important correlations between the particles of the system,
a symmetric ground state of a quantal system is described by an approx-
imation method which violates the symmetry. However, great care should
then be exerted in order to insure that the approximation scheme does not
break the symmetry to such an extent that the relevant physical properties
are distorted. Color superconductivity is an example of such a case which
is here discussed in detail.

A novel BCS-type formalism is constructed in the framework of a schematic
QCD inspired quark model, having in mind the description of color sym-
metrical superconducting states. The physical properties of the BCS vacuum
(average numbers of quarks of different colors) remain unchanged under an
arbitrary color rotation. In the usual approach to color superconductivity,
the pairing correlations affect only the quasi-particle states of two colors, the
single particle states of the third color remaining unaffected by the pairing
correlations. As a consequence, the average numbers of quarks depend ap-
parently on the color, which is an unphysical and undesirable feature. The
SU (3) symmetry should not be violated to such an extent. In the theory of
color symmetrical superconductivity here proposed, the pairing correlations
affect symmetrically the quasi-particle states of the three colors so that van-
ishing net color-charge is automatically insured. It is found that the ground
state energy of the color symmetrical sector of the Bonn model is well ap-
proximated by the average energy of the color symmetrical superconducting
state proposed here.

1Talk based on joint work with H. Bohr and C. Providência
*Email address: providencia@teor.fis.uc.pt
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4.1 Introduction

It is in general expected that the invariance properties of the Hamiltonian

of an arbitrary quantum system are shared by its ground state. However, in

some situations, this expectation is not realized. We say then that a spontaneous

symmetry breaking occurs. Rudolf Peierls [1] refers to spontaneous symmetry

breaking of first kind when the ground state is symmetric and is also degen-

erate, or almost degenerate, with states of a different symmetry. Then, linear

combinations of states with different symmetries may arise as a consequence of

small perturbations inherent to the processes of preparation or measurement.

This is the case of optically active molecules, such as sugar. The two non-

stationary asymmetric forms will very slowly transform into one another, in the

course of time.

According to Peierls, a broken symmetry of second kind occurs when the

ground state belongs to a representation of the relevant symmetry group, other

than the identical one. This form of symmetry breaking is present in a ferro-

magnet which may be regarded as a lattice of N atoms each one possessing a

spin s, the forces between spins showing a tendency to align them. The total

spin is Ns and may point in practically any direction. Thus, the ferromagnet is

not isotropic, contrary to the Hamiltonian. Here, the relevant symmetry group

is the rotation group of the spin, that is, the group SU (2).

Peierls refers to broken symmetry approximation when, in order to incorpor-

ate important correlations, it is convenient to resort to approximations which

break some relevant symmetry of the Hamiltonian. This is the case of the shell-

model (a translation leaves the Hamiltonian invariant, but the shell-model breaks

this symmetry) and of superconductivity (the global gauge symmetry, which in-

sures the conservation of the number of electrons, is broken by the BCS state).

The symmetry is broken by the approximation used to describe the physical

state, but not by the physical state itself.

Since the invention of Quantum Chromo-Dynamics (QCD) as the rigorous

theory of the strong interaction, it has been generally accepted that quark and

gluon fields are the building blocks of nuclear structure, in the framework of
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Figure 4.1. The double well potential V (x) in quantum mechanics

QCD field theory. The color quantum number is associated with the SU (3) sym-

metry which characterizes this theory. The phase equilibrium of hadronic matter

is a topic of great current interest of particular relevance to astrophysics. When

the density of hadronic matter reaches high values, that is, values which are

several times higher than the nuclear density at equilibrium, a great diversity of

phases is expected, namely: restoration of chiral symmetry, deconfinement, and

color superconductivity. Chiral symmetry is the characteristic symmetry of QCD

according to which the helicity of the Dirac fermions with zero mass is a Lorentz

invariant. A nucleon is a small cavity, or bag, confining three quarks of different

colors. The quark mass is dynamically generated, almost entirely, through a

mechanism which is analogous to the Higgs mechanism and is associated with

the spontaneous breakdown of chiral symmetry. As the density increases, the

nucleonic bags begin to overlap and end up by getting dissolved, so that the

quarks become free. Due to the complexity of the theory, it is extremely difficult,

if not impossible, to obtain reliable results directly from QCD. It is therefore usual

to resort to effective models such as the Nambu-Jona-Lasinio (NJL) model [2–4].

These models assume that the gluonic degrees of freedom produce an attract-

ive two-body force between the quarks, which, effectively, replaces the gluons.

Since this force is attractive, it originates the phenomenon of color superconduct-
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ivity, which is analogous to the corresponding superconductivity effect familiar

from condensed matter physics and is described as the formation of Cooper

pairs, according to the Bardeen-Cooper-Schrieffer (BCS) theory. At present, it is

generally accepted that QCD exhibits, at high densities, color superconductivity

induced by the phenomenon of Cooper instability. Color superconductivity is

supposed to be realized in hadronic matter at extremely high densities, several

times the normal nuclear density, which is expected to be found, for instance, in

the interior of neutron stars. The color superconducting phase of quark matter,

described by the BCS formalism, breaks color symmetry. On the other hand,

this symmetry, being a form of gauge symmetry, is not actually broken by the

physical state. The breakdown of the SU (3) symmetry by the approximation

method is the price one has to pay in order to account for important correla-

tions which are responsible for the superconducting property. However, great

care should then be exerted in order to insure that the approximation scheme

does not break the symmetry to such an extent that the relevant physical proper-

ties are distorted. This fact imposes important restrictions on the BCS formalism

which should therefore be used with caution. It is important to identify and

discard spurious unphysical states, belonging to representations other than the

identical one, which, unavoidably, will artificially emerge.

Effective models have been use with success to investigate the properties

of hadronic matter and to obtain a qualitative picture of the phase diagram

[5]. Recently, the color superconducting phase has been investigated by many

authors in the framework of the BCS approach. Quarks move freely in the

deconfined phase, but this phase remains a singlet of the color SU (3) group,

since, as remarked, a gauge symmetry can not be spontaneously broken [8].

A BCS state |Φ〉 describes a colorless physical state if N1 = N2 = N3, where Ni

denotes the number of quarks with color i, which means that

〈Φ|Sλ3 |Φ〉 = 〈Φ|Sλ8 |Φ〉 = 0. (4.1)

Here, Sλk denotes the SU (3) generator associated with the de Gell-Mann matrix

λk, that is, Sλ3 ∝ N1−N2, Sλ8 ∝ N1 +N2− 2N3. Nevertheless, the condition (4.1)
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is not enough to ensure that |Φ〉 is physically acceptable. Since, as observed,

the SU (3) symmetry cannot be broken, the physical content of the several states

which, by a color rotation, are obtained from a given physically acceptable BCS

state, must be the same. Unphysical spurious states, belonging to irreducible

representations which are different from the identical one, are invariably exhib-

ited by the effective models which are found in the literature. It is very important

to ensure that the performed calculations are not invalidated by those undesir-

able states. Let Uc denote an arbitrary color rotation, i.e., Uc = exp
∑8

k=1 ixkSλk ,

being xk real and arbitrary parameters. The state |Φ〉 must be equivalent to the

rotated state Uc|Φ〉, for any Uc, as far as expectation values of physical observ-

ables are concerned, i.e., the physical properties associated with |Φ〉 must be

the same as those associated with Uc|Φ〉. Thus, condition (4.1) must be replaced

by condition

〈Φ|U †
c Sλ3Uc|Φ〉 = 〈Φ|U †

c Sλ8Uc|Φ〉 = 0,

for an arbitrary Uc, which implies

〈Φ|Sλk |Φ〉 = 0, k = 1, 2, . . . , 8. (4.2)

This is the condition a state |Φ〉 must satisfy in order to be physically meaningful.

If only condition (4.1) is imposed, and not condition (4.2), the BCS state |Φ〉 may

not be equivalent to the state Uc|Φ〉. If this happens, it will belong to an SU (3)

representation which is not the identical one, and this is physically unacceptable.

In [9], it is shown that the condition (4.2) may be easily implemented. In the

next section, the construction of a BCS state which is suitable to describe a color

singlet, is illustrated in the framework of a convenient schematic model.

4.2 A schematic SU(3) pairing model

At present, it is, in general, admitted that nuclear structure is based on quark

and gluon fields, in the framework of QCD field theory. An interesting model (in

spite of well known drawbacks) concerning that viewpoint is the Bonn model

proposed by Petry et al. [11]. This model describes the nucleus as an MIT bag,
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that is, a set of free quarks bound together by an external pressure. By intro-

ducing a decisive pairing force that suppresses unphysical degeneracies of the

quark system, many features of nuclear physics are reasonably well accounted

for by that model.

The quark model proposed by H. R. Petry et al. [11] is defined by the Hamilto-

nian

H = G
3∑
j=1

A†
j Aj , (4.3)

where

A†
1 =

∑
m>0

(c†2mc
†
3m + c†2mc

†
3m), m = m. (4.4)

In Eq. (4.3), G < 0 is the coupling constant and the expressions for A†
2,A

†
3, are

obtained by circular permutation of the indices 1, 2, 3. In Eq. (4.4), c†im are quark

creation operators and the indices i and m denote, respectively, the color and

the remaining single particle quantum numbers. The state obtained from m by

time reversal, in a generalized sense, is denoted by m.

Color superconductivity has been applied in [9] to the description of the

ground state of the Bonn model, which in general is not color symmetric. In-

deed, although H has SU (3) symmetry, its eigenstates are not necessarily SU (3)

singlets. Since, from the point of view of hadronic physics, the sectors which

belong to other representations than the singlet one are not acceptable, the

study of the color symmetrical sector is particularly interesting. The generators

of color U (3) read

Skl =
∑
m

c†kmclm =
∑
m>0

(c†kmclm + c†kmclm).

A state |Φ〉 is a color singlet if it satisfies the following condition

Skl|Φ〉 = 0, k �= l, Skk|Φ〉 = λ|Φ〉, k = 1, 2, 3. (4.5)

Let us consider the general BCS state.

|Φ〉 = exp
3∑
j=0

⎛
⎝K

∑
0<m≤Ω′

A†
jm + K̃

∑
Ω′<m≤Ω

Ajm

⎞
⎠ |0Ω′〉,
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where

|0Ω′〉 =
⎛
⎝ 3∏

j=1

∏
Ω′<m≤Ω

c†jmc
†
jm

⎞
⎠ |0〉,

and

A†
1m = (c†2mc

†
3m + c†2mc

†
3m).

The expressions for A†
2m,A

†
3m, are obtained by circular permutation of the in-

dices 1, 2, 3. This state is color neutral in the sense that 〈Φ|N̂1|Φ〉 = 〈Φ|N̂2|Φ〉 =
〈Φ|N̂3|Φ〉, where the quark number operators read

N̂j =
∑
j

c†jmcjm, j = 1, 2, 3.

The parameters K , K̃ are real. We denote by 2Ω the level degeneracy for a

fixed color, that is, the totality of eigenstates pertaining to all quantum numbers

beyond color. It is convenient to introduce the notation 〈W 〉 = 〈Φ|W |Φ〉/〈Φ|Φ〉.
If Ω′ = Ω, the quark number N = 〈N̂1 + N̂2 + N̂3〉 satisfies 0 ≤ N ≤ 4Ω. If Ω′ = 0,

the quark number N satisfies 4Ω ≤ N ≤ 6Ω. The state vector |Φ〉 has obviously
zero net color charge, but it is not color symmetrical, that is, it does not fulfil the

condition (4.5). However, K , K̃ may be chosen so that |Φ〉 is color symmetrical

in the average, in the sense that (4.2) is satisfied. We observe that

c1m|Φ〉 = K(c†2m − c†3m)|Φ〉, c1m|Φ〉 = K(c†2m − c†3m)|Φ〉, 0 < m ≤ Ω′,

c†1m|Φ〉 = −K̃(c2m − c3m)|Φ〉, c†1m|Φ〉 = −K̃(c2m − c3m)|Φ〉, Ω′ < m ≤ Ω.
(4.6)

These relations are crucial. They are straightforward consequences of the com-

mutation relations⎡
⎣c1p,

⎛
⎝K

∑
0<m≤Ω′

A†
jm + K̃

∑
Ω′<m≤Ω

Ajm

⎞
⎠
⎤
⎦ = K(c†2p − c†3p), 0 < p ≤ Ω′,

⎡
⎣c†1p,

⎛
⎝K

∑
0<m≤Ω′

A†
jm + K̃

∑
Ω′<m≤Ω

Ajm

⎞
⎠
⎤
⎦ = −K̃(c2p − c3p), Ω′ < p ≤ Ω.

From (4.6) it follows that the BCS vacuum |Φ〉 is annihilated by the operators

d1m = c1m − K(c†2m − c†3m), d1m = c1m − K(c†2m − c†3m), 0 < m ≤ Ω′,

d1m = c†1m + K̃(c2m − c3m), d1m = c†1m + K̃(c2m − c3m), Ω′ < m ≤ Ω. (4.7)
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The expressions for d2m, d3m, d2m, d3m, are obtained by circular permutation of

the indices 1, 2, 3. These operators characterize the so-called Bogoliubov quasi-

particles. The transformation in Eq. (4.7) is not canonical, since {dim, d†
jm} �= δij ,

but the corresponding canonical transformation, which is not needed for the

present purpose, may be easily obtained. We observe that the contractions

〈c†imcjm〉, i �= j, are independent of i, j. Similarly the contractions 〈c†jmcjm〉, are
independent of j.

If 0 < m ≤ Ω′, we easily find that

〈c†imcjm〉 = 〈c†imcjm〉 = −
K2

1 + 3K2
, i �= j, 〈c†jmcjm〉 = 〈c†jmcjm〉 =

2K2

1 + 3K2
.

If, on the other hand, Ω′ < m ≤ Ω, we have

〈c†imcjm〉 = 〈c†imcjm〉 =
K̃2

1 + 3K̃2
, i �= j, 〈c†jmcjm〉 = 〈c†jmcjm〉 = 1− 2K̃2

1 + 3K̃2
.

Thus, we obtain

〈Sij〉 = −2Ω′ K2

1 + 3K2
+ 2(Ω− Ω′)

K̃2

1 + 3K̃2
, i �= j. (4.8)

By conveniently choosing K , K̃ , we may insure that Eq. (4.2) is satisfied, so

that the BCS vacuum |Φ〉 represents a color singlet. We recall that the SU (3)

generators Sλj associated with the Gell-Mann matrices λj read

Sλ1 = S21 + S12, Sλ2 = i(S21 − S12), Sλ3 = S11 − S22,

Sλ4 = S31 + S13, Sλ5 = i(S31 − S13), Sλ6
= S32 + S23,

Sλ7 = i(S32 − S23), Sλ8 =
1√
3
(S11 + S22 − 2S33).

The state |Φ〉 satisfies automatically (4.1), which is very convenient, but is not

sufficient. Indeed, (4.1) remains valid when we replace |Φ〉 by Uc|Φ〉, for an

arbitrary color rotation Uc, only if (4.2) is further implemented.

Next we compute the contractions 〈c2mc1m〉 = 〈c3mc2m〉 = 〈c1mc3m〉 =

〈c2mc1m〉 = 〈c3mc2m〉 = 〈c1mc3m〉 =: Dm, where Dm is real. We find

Dm =
K

1 + 3K2
, for 0 < m ≤ Ω′; Dm =

K̃
1 + 3K̃2

, for Ω′ < m ≤ Ω.
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We are now able to compute the energy expectation value

E
G

=
3∑
j=1

〈Φ|A†
j Aj |Φ〉

〈Φ|Φ〉 .

Let p = Ω′/Ω, q = 1 − p = (Ω − Ω′)/Ω. Define θ, θ̃ such that
√
3K/

√
1 + 3K2 =

sin θ, 1/
√
1 + 3K2 = cos θ,

√
3K̃/

√
1 + 3K̃2 = sin θ̃, 1/

√
1 + 3K̃2 = cos θ̃. Then,

having in mind (4.8), the color symmetry constraint 〈Sij〉 = 0, i �= j, reduces to

p cos 2θ − q cos 2θ̃ = p− q.

The main contribution to the energy expectation value comes from the square

of the expectation values 〈A1〉 = 〈A2〉 = 〈A3〉 = Ω(p sin 2θ + q sin 2θ̃)/
√
3, which

involve contractions of the form 〈cc〉, The corresponding constrained extremum

occurs for cos 2θ = − cos 2θ̃ = p− q, sin 2θ = sin 2θ̃ =
√

1− (p− q)2, so that, in

the leading order, we have

E
G
≈ Ω2(1− (p− q)2).

In terms of the variables θ, θ̃, the number of quarks reads

N = 6Ω

[
p
1 − cos 2θ

3
+ q

(
1− 1− cos 2θ̃

3

)]
.

At the extremum, N = 6Ωq, and

E
G
≈ Ω2

[
1−

(
1− N

3Ω

)2
]
.

To complete the calculation of E/G we must add the small corrections coming

from the neglected contractions of the form 〈c†c〉.
In terms of θ, θ̃, we have

〈c†jmcjm〉 = 〈c†jmcjm〉 =
1
3
(1− cos 2θ), for 0 < m ≤ Ω′,

〈c†jmcjm〉 = 〈c†jmcjm〉 = 1− 1
3
(1− cos 2θ̃), for Ω′ < m ≤ Ω.

At the extremum, 〈c†jmcjm〉 = 〈c†jmcjm〉 = 2q/3, for 0 < m ≤ Ω′, 〈c†jmcjm〉 =

〈c†jmcjm〉 = (1 + 2q)/3, for Ω′ < m ≤ Ω. Finally, the ground state energy of

the color symmetrical super-conducting phase reads,

E
G

=
N
9

(
6Ω− N + 1 +

4N
3Ω

)
, 0 ≤ N ≤ 6Ω. (4.9)
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Figure 4.2. ground state energy of the color symmetrical sector versus the quark number,
for Ω = 6. Thick line: exact result according to (4.10); thin line: color symmetrical
BCS estimate according to (4.9). Since G < 0, the upper curve lies below in energy, in
agreement with Ritz theorem.

Using the Schwinger type representation of su(4), formulated in terms of

appropriate boson operators, which was developed by Yamamura et al. [12],

the color symmetrical sector of the Bonn model has been characterized in [13].

There, the exact ground state energy of the color symmetrical sector was found

to read
E
G

=
N
3

(
2Ω + 3− N

3

)
, 0 ≤ N ≤ 6Ω. (4.10)

It is interesting to compare Eqs. (4.9) and (4.10). This is done, in Figure 4.2.

4.3 Conclusions

Following a classification due to Sir Rudolf Peierls, two possible types of

spontaneously broken symmetries have been discussed, namely, spontaneously

broken symmetry of first kind, when a symmetric ground state is degenerate

with an asymmetric one, and spontaneously broken symmetry of second kind,

when the ground state belongs to a representation of the relevant symmetry

group other than the identical one. Symmetry breaking approximation may also

be considered. In this case, in order to take into account in a simple manner

important correlations, a symmetric ground state of a quantal system is described
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by an approximation method which violates the symmetry. However, great care

should then be exerted in order to insure that the approximation scheme does

not break the symmetry to such an extent that physical properties are distorted.

Color superconductivity is an example of such a case which is here discussed

in detail.

We have constructed a BCS-type formalism, based on a conveniently gener-

alized Bogoliubov transformation, which is appropriate to describe color sym-

metrical superconducting states of quark matter. It is found that the ground state

energy of the color symmetrical sector of the Bonn model is well approximated

by the average energy of the color symmetrical superconducting state proposed

here and it is easily seen that the color symmetric BCS result becomes closer to

the exact one while Ω increases.

It should be emphasized that the present approach automatically ensures

vanishing net color charge, even if (4.2) is not imposed. Condition (4.2) is

important because most field theoretic models contain sectors which belong to

other color SU (3) representations than the color singlet one. Such sectors are

therefore unphysical and should be discarded.
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