O Pequeno Atlas do Sistema Solar ambiciona mostrar perspectivas novas sobre o nosso sistema planetário. As fotografias, muitas vezes surpreendentes, frequentemente belíssimas como puros objectos estéticos, são a espinha dorsal deste livro. Encontram-se aqui imagens reais de quase todos os corpos que se podem ver como algo mais que um pontinho perdido no vazio – e até de alguns destes. O Atlas também terá algo a dar a quem procure uma informação condensada, facilmente acessível, sobre os mais importantes corpos do nosso sistema planetário. Para além de dados numéricos, como as características astronómicas e físicas dos maiores planetas e satélites, e de listas actualizadas destes, de asteróides e de cometas, procurou-se reunir aqui a mais recente informação geológica e topográfica, muita dela na forma de mapas, na sua maioria inéditos. Parece muita informação, mas é muito pouca: a Planetologia é um campo que só pode expandir-se cada vez mais, pois não sabemos quase nada. E ainda bem.

Eduardo Ivo Alves nasceu em Lisboa, em 1959. É licenciado e doutorado em Geologia pela Universidade de Coimbra, onde desempenha as funções de director do Instituto Geofísico e de professor auxiliar do Departamento de Ciências da Terra. Tem leccionado principalmente nas áreas da Geofísica, da Geomatemática e das Geociências Planetárias. Foi o fundador e primeiro coordenador do Centro de Geofísica da Universidade de Coimbra no qual actualmente coordena o grupo de investigação em Geociências Planetárias. Foi o proponente e investigador principal do primeiro projecto de investigação português de largo espectro sobre Marte, que conferiu ao Instituto Geofísico o estatuto de laboratório reconhecido pela Agência Espacial Europeia. Publicou mais de oitenta artigos de investigação em livros, revistas e actas de congressos e tem-se empenhado na divulgação pública das geociências, tendo realizado mais de cem conferências e entrevistas a órgãos de comunicação social na última década.

Versão integral disponível em digitalis.uc.pt
Sistema Solar

PEQUENO ATLAS DO

E. IVO ALVES
Porque é crítico chegar mais além...

...Critical Software.

DEPENDABLE TECHNOLOGIES FOR CRITICAL SYSTEMS

Do the right things! Do the things right!
Sumário
1. Introdução .. 7
2. A Origem do Sistema Solar ... 15
3. O Sol ... 19
4. Mercúrio ... 23
5. Vénus .. 31
6. A Terra .. 41
7. A Lua .. 53
8. Marte .. 63
9. Os Satélites de Marte: Fobos e Deimos ... 79
10. Os Asteróides ... 83
11. Os Meteoritos ... 89
12. Júpiter .. 95
13. Io .. 103
14. Europa .. 111
15. Ganimedes ... 117
16. Calisto .. 123
17. Os satélites menores de Júpiter .. 129
18. Saturno .. 133
19. Titã .. 139
20. As outras luas de Saturno .. 145
21. Úrano .. 159
22. Os satélites de Úrano .. 163
23. Neptuno ... 167
24. Tritão e os satélites de Neptuno ... 171
25. Plutão e mais além ... 177
26. Os Cometas, a Cintura de Kuiper e a Nuvem de Oort 183
27. Glossário .. 193
28. Para conhecer mais .. 215
29. Cronologia da exploração do Sistema Solar .. 217
1. Introdução

Um pouco de História

O Instituto Geofísico da Universidade de Coimbra (IGUC) foi fundado em 1864, ano em que se começaram as medidas sistemáticas de parâmetros climatológicos (temperaturas, pressão atmosférica, pluviosidade, direcções e velocidades dos ventos). Logo em 1866, sob o impulso de Gauss, criou-se o observatório magnético, que ainda hoje é o único do território nacional. Em 1906 o IGUC adquiriu o primeiro sismógrafo que funcionou em Portugal.

As séries de dados mantêm-se quase ininterruptas desde o início até hoje, tendo sobrevivido a todas as convulsões que ocorreram nestes quase 150 anos. Este é um património ímpar à escala mundial, que deve ser preservado e sempre actualizado.

Quando alguém está doente, os médicos observam-no, usando todos os meios de diagnóstico que estão ao seu alcance: medem a temperatura, a pulsação e a tensão arterial; fazem electrocardiogramas, radiografias e análises aos fluidos corporais. Hoje, que a Terra é cada vez mais encarada como um planeta doente, como é que se pode esperar diagnosticar o seu estado sem recurso aos meios da Geofísica?

Continuando a analogia com a Medicina, uma das ferramentas mais preciosas ao serviço dos médicos é a experiência: quando observam um novo doente podem fazer prognósticos sobre a evolução do seu estado de saúde porque sabem como evoluiu a saúde de outros doentes. Essa é uma das razões porque tem sido dada tanta importância ao estudo de outros planetas. Só para dar um exemplo, Vénus é um laboratório vivo sobre o efeito de
estufa que nos preocupa hoje tanto na Terra. Assim, desde meados do séc. XX que a ciência planetária tem sido um ramo de pleno direito da Geofísica, dado que os métodos que usa para estudar os planetas são os métodos da Geofísica: a detecção remota (análise de imagens obtidas por satélites), a sismologia, o estudo do magnetismo e da gravidade, a meteorologia e a climatologia.

A oportunidade

Em Portugal estivemos um pouco arredados deste novo campo de investigação até que se abriu uma janela de oportunidade com a adesão do nosso País como membro de pleno direito da Agência Espacial Europeia (ESA – European Space Agency), em 2001.

A fim de dinamizar as ciências planetárias nos países que, como o nosso, são inexperientes neste ramo, a ESA lançou, logo em 2001, um concurso para analisar e divulgar os dados que seriam obtidos pela missão Mars Express, que partiu para Marte em Julho de 2003. O IGUC concorreu e o seu projecto MAGIC (Mars Geophysical Imagery Classification) foi aprovado. Inovámos, assim, mais uma vez: fomos o primeiro laboratório português a ser reconhecido e apoiado pela ESA.

Um dos pontos mais importantes do nosso projecto é a divulgação em Portugal das Ciências Planetárias. Como essa divulgação tem que começar pelos mais jovens, iniciámos um ciclo de palestras nas escolas onde, é claro, uma das perguntas recorrentes foi: «como é que posso aprender mais?».

Um local óbvio para encontrar respostas é a Internet, mas esta tem alguns inconvenientes. Muitos jovens não dominam ainda a língua inglesa, para não falar que nem todos têm acesso à Internet em casa. Além disso, a informação na Internet encontra-se dispersa e oferece credibilidades muito variáveis.

O Atlas

Surgiu, assim, a ideia de fazer este Atlas do Sistema Solar. Ele destina-se a todos aqueles que procuram uma informação condensada, facilmente acessível, e imagens reais de todos os corpos do nosso sistema planetário. Todos os corpos? Bem, não todos. Se se pudessem contar todos os asteróides, todos os cometas, todos os objectos da Cintura de Kuiper e da Nuvem de Oort (todas as partículas nos anéis de Saturno?), o número teria facilmente mais de quinze zeros. Digamos, os maiores objectos do Sistema Solar que têm nome...

Dada a formação em Geologia do autor, também se juntou informação disponível sobre Geologia Planetária, principalmente a partir dos mapas geológicos dos Serviços Geológicos dos Estados Unidos (USGS), por estes disponibilizados. Estes mapas devem ser lidos "com um grão de
Além disso, a atmosfera protege-nos do constante bombardeamento de meteoros a que estamos sujeitos - vejam-se as crateras nas imagens dos planetas quase desprovidos de atmosfera: Mercúrio, Marte e a Lua, por exemplo (figura 6.1).

Tal como em Marte, o clima na Terra tem estações, causadas pela inclinação do eixo de rotação (23,45°) em relação à Eclíptica. Para além dos movimentos de translação e rotação, a Terra tem outros movimentos menos perceptíveis: o eixo de rotação da Terra descreve ainda movimentos de precessão, nutação forçada e nutação livre, num jogo muito complexo de relações gravitacionais externas (influências combinadas da Lua e do Sol) mas também internas, ainda não completamente esclarecidas (figura 6.5).

A Terra é o único planeta em que se conhece uma tec-tónica activa. Isto significa que a crosta está subdividida em placas, menos densas e mais rígidas que o manto sobre o qual flutuam. As maiores placas que actualmente estão definidas são a euro-asiática, a africana, a indo-australiana, a pacífica, a antártica, a norte-americana e a sul-americana, embora existam inúmeras pequenas placas, como as de Juan de Fuca, Cocos, Caraíbas, Nazca, Arábia, Somália, Filipinas e Carolina.

A tectónica é activa porque estas placas estão em permanente movimento, sendo criadas nas dorsais oceânicas, das quais se afastam como tapetes rolantes, arrastando com elas os continentes, e destruindo-se nos contactos convergentes (figura 6.6). A crosta oceânica da Terra é, portanto, toda ela relativamente jovem.

Assim, na linha de encontro entre placas há sismos, produzidos pelo efeito mecânico do choque, e vulcões,
resultado do magma ascendente. O mapa dos sismos e vulcões na Terra é, ao mesmo tempo, o mapa das placas tectónicas (figura 6.7).

Note-se, contudo, na figura 6.7, que há muitos vulcões no interior das placas - isto é bem evidente, por exemplo, nas placas africana e do Pacífico. Este vulcanismo intra-placa acontece nos chamados “pontos quentes” (hotspots) onde há ascensão directa de material do manto. Pensa-se que este terá sido o processo dominante do vulcanismo em Vênus e em Marte.

O conhecimento das estruturas tectónicas de um planeta é essencial para a compreensão da sua evolução geológica. Por isso temos procurado, no IGUC, desenvolver
métodos de cartografia automática de falhas que, testados na Terra (figura 6.8), podem ser aplicados noutros planetas, como veremos no próximo capítulo.

A fonte de energia para a geotectónica é o calor interno da Terra, parte dele remanescente da formação planetária, parte proveniente do decaimento de isótopos radioactivos.

A estrutura interna da Terra é conhecida pela análise dos sismogramas, iniciada no princípio do séc. XX, dado que a velocidade de propagação das ondas sísmicas varia com as propriedades mecânicas dos meios que atravessam. Foi possível, assim, definir a seguinte estratigrafia: crosta (-30 a -40 km, de composição “basáltica”, sob os oceanos, -60 a -70 km, de composição “granítica”,

Figura 6.9 – Esquema do interior da Terra. EIA/IGUC, base NASA.

Figura 6.10 – O campo geomagnético externo. EIA/IGUC.
sob os continentes); manto superior, de composição “peridotítica”, (-650 km); manto inferior, fluido, de composição “dunítica” (-2900 km); núcleo externo, líquido, de composição metálica, predominantemente Fe, Ni, Si, S, (-5200 km); núcleo interno, também metálico, mas sólido (-6378 km) (Figura 6.9).

A análise dos sismos é a única forma que temos de aceder ao interior de um planeta, pelo que seria muito importante que todas as sondas planetárias estivessem equipadas com um sismómetro.

O calor interno da Terra, para além de fornecer a energia para os movimentos tectónicos, produz correntes de convecção no núcleo externo. O movimento dessas correntes, e a sua interacção com o núcleo interno, produz um mecanismo de dinamo que gera o campo

Figura 6.11 – Aurora austral, fotografada pelo satélite IMAGE. NASA.

Figura 6.12 – Mosaico da cobertura global de nuvens fotografada pelo satélite MODIS. NASA.
magnético dipolar terrestre, que faz com que a Terra se compor como um íman, com a polaridade Sul próxima do Norte geográfico. A geração do campo geomagnético é um fenômeno caótico e, como tal, tem variações no tempo que aparentam ser aleatórias, embora sejam fruto de processos bem definidos. Esse carácter caótico é o responsável pelas inversões do campo magnético: por vezes, o Norte e o Sul magnéticos invertem bruscamente (em termos de tempo geológico - cerca de 2000 anos) as suas posições. O conhecimento das épocas dessas inversões ajudou a datar os fundos oceânicos (Figura 6.6) e foi um elemento precioso no desenvolvimento da teoria da tectónica global.

O campo geomagnético é mais um escudo protector da Terra. Sem a sua presença, o vento solar incidiria livremente sobre a superfície do nosso planeta, tornando impossível a vida. A interacção do vento solar com o campo geomagnético dipolar deforma este e produz uma componente não-dipolar, o campo externo (figura 6.10). Algumas partículas do vento solar penetram, contudo, a magnetosfera, tendo como consequências, entre outras, as auroras polares (boreais e austrais) (Figura 6.11).

Para conhecer a Terra talvez não fossem necessários os veículos espaciais mas são estes que nos permitem uma visão global, em tempo real, que hoje é insubstituível para monitorizar a meteorologia (figura 6.12), as alterações climáticas com fenómenos como os degelos polares (figuras 6.13 e 14) ou o fenómeno El Niño (figura 6.15), a distribuição da vida (figura 6.16) e dos recursos naturais (figura 6.17) ou, simplesmente, vermo-nos com outros olhos (figura 6.18).
É pelo estudo da detecção remota da Terra que podemos interpretar com maior segurança os dados que nos chegam dos outros corpos do Sistema Solar.

Figura 6.13 Cobertura de gelo em Janeiro de 2004. NASA.

Figura 6.14 – Cobertura de gelo em Abril de 2004. NASA.
Figura 6.15 – El Niño em Setembro de 2006. NASA.

Figura 6.16 – Teores de clorofila na água do mar. NASA.
Figura 6.17 – Vale da Morte (Death Valley, USA), composição colorida no domínio do infravermelho (bandas 7 e 4) e visível (banda 2). Laura Rocchio, Landsat 7 ETM+/NASA. As imagens no infravermelho permitem avaliar a cobertura vegetal e o tipo de solo, distinguindo até rochas diferentes e os seus teores de humidade.

Figura 6.18 – Luzes da Terra. NASA.
11. Os Meteoritos

Hoje temos um conhecimento profundo sobre a composição, a origem e os processos sofridos pelas rochas que compõem o nosso Planeta. Temos ainda um razoável conhecimento em primeira mão sobre as rochas lunares, a partir dos 382 kg de amostras colhidas pelos astronautas do programa Apolo e 326 g recuperados por três missões soviéticas Luna não tripuladas.

E dos outros corpos do Sistema Solar?
Há análises químicas obtidas directamente nas superfícies de Vénus e de Marte pelas sondas robóticas que lá pousaram, mas estas análises não foram controladas por análises petrográficas (análise microscópica dos minerais e das suas relações geométricas), que não se podiam fazer remotamente.

Mas também temos outra ajuda preciosa para conhecer a geologia extraterrestre: os meteoritos.

As “estrelas cadentes” que se podem ver quase todas as noites e são particularmente numerosas em algumas épocas do ano são meteoros: pedaços de asteróides e cometas que atingem altíssimas temperaturas pelo atrito que sofrem ao atravessar a atmosfera, de tal modo que a maioria se vaporiza antes de atingir o solo. Se um meteoro tem dimensão suficiente para sobreviver à travessia da atmosfera, atinge a superfície terrestre e pode ser encontrado e estudado: é um meteorito. A terminação “ito”, em português de Portugal, significa “rocha”, como em granito – rocha granular – tal como a terminação “ite”, como em volframite, significa “mineral”. Assim, um meteorito é uma rocha do céu.
E temos muito material para estudar. Crê-se que todos os dias a nossa atmosfera é atravessada por mais de cem toneladas de meteoros, embora a maioria se vaporize. Em todo o caso, neste momento já se conhecem e estão catalogados meteoritos num total de cerca de 500 toneladas.

É possível classificar os meteoritos em várias categorias segundo a sua textura e a sua composição química e mineralógica. As mais importantes são:

1. **Condritos.** São os mais comuns (cerca de 82% do total de meteoritos). Meteoritos líticos (de composição semelhante a rochas terrestres), caracterizam-se por terem cóndrulos: pequenas esferas (cerca de 1mm) de minerais fundidos (figura 11.1).

 1.1. **Condritos comuns** (figura 11.2), 95% dos condritos.

 1.2. **Condritos carbonáceos** (figura 11.3). Caracterizam-se por terem carbono – o elemento mais essencial para a vida – na sua composição.

2. **Acondritos.** São também meteoritos líticos, tal como os condritos, mas não apresentam cóndrulos. Constituem cerca de 8% dos meteoritos e são, talvez, os mais interessantes para a ciência planetária pelas suas supostas origens.

 2.1. **Tipo HED** (Howarditos, Eucritos, Diogenitos), supõe-se provirem do asteróide 4 Vesta, do solo (H – figura 11.4), da crosta basáltica (E – figura 11.5) ou de maiores profundidades (D – figura 11.6).

 2.2. **Tipo SNC** (Shergottitos, Nakhlitos, Chassignitos), supõe-se provirem de Marte, basaltos (S – figura 11.7), peridotitos (N – figura 11.8) e dunitos (C – figura 11.9). O meteorito ALH84001 (figura 8.6), onde se pensou encontrar fósseis de bactérias era um acondrito de tipo SNC.

2.3. **Lunares** (figura 11.10) que serão provenientes da lua.

Versão integral disponível em digitalis.uc.pt
Outros tipos, geralmente associados a vários tipos de asteróides.

3. **Sideritos** (figura 11.11). Constituídos por ligas cristalinas de ferro e níquel, são cerca de 5% dos meteoritos. Caracterizam-se pelas estruturas de Widmanstätten, figuras únicas de cristais de ferro-níquel (figura 11.12). A sua composição deve assemelhar-se à do núcleo terrestre.

4. **Siderólitos**. (figura 11.13). São misturas de ligas de ferro e níquel e materiais líticos. Raros (cerca de 1% do total), pensa-se que a sua composição deve ser semelhante à da zona de transição núcleo/manto na Terra.

A queda de meteoritos é a responsável pelo cratererismo que modela a superfície de Mercúrio, da Lua, de Marte, mas também da Terra e dos planetas com atmosferas (figura 11.14). Neste caso, só os maiores atingem a superfície, com energias da ordem das megatoneladas de TNT, pensando-se que possam ter sido responsáveis pelas grandes extinções faunísticas dos finais dos períodos Pérmico e Cretácico.
Figura 11.3 – Fragmento do meteorito Allende, o maior condrito carbonáceo jamais encontrado (cerca de 2 toneladas). ST.

Figura 11.4 – Howardito: dois fragmentos do meteorito QUE94200. NASA.

Figura 11.5 – Eucrito brechificado: o meteorito GRA98033. NASA.

Figura 11.7 – Shergottito recolhido em Marrocos. Captmondo.

Figura 11.8 Nakblito: o meteorito Nakbla original. NASA.
Figura 11.9 – Lâmina delgada do meteorito Chassigny original, um dos dois únicos chassignitos, em luz polarizada. NASA/JPL. Largura: cerca de 3 mm. Os minerais que se observam são principalmente olivinas.

Figura 11.10 – Meteorito lunar: ALH 81005, o primeiro cuja proveniência foi positivamente identificada. NASA.

Figura 11.11 – Siderito. ELA/IGUC.

Figura 11.12 – Estruturas de Widmanstätten. Hans Bernhard.

Figura 11.14 – A cratera Barringer, no Arizona. USGS.
12. Júpiter

Depois de termos visto os planetas telúricos, ou terrestres, vamos, continuando a afastar-nos do Sol, começar a ver os planetas gigantes gasosos, ou jovianos. Júpiter, o Zeus grego, era o rei dos deuses – e o planeta Júpiter é bem o rei dos planetas do Sistema Solar.

Júpiter é conhecido pelo Homem desde sempre – é o quarto objecto mais brilhante do firmamento (embora por vezes seja ultrapassado por Marte em oposição). Tem o importante papel histórico de ter sido o primeiro objecto extraterrestre onde se observaram satélites (Galileu, em 1610), o que foi um argumento determinante a favor do

<table>
<thead>
<tr>
<th>JUPITER</th>
<th>DADOS ASTRONÔMICOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orbita</td>
<td>Sol</td>
</tr>
<tr>
<td>Distância média ao Sol (UA)</td>
<td>5,20336</td>
</tr>
<tr>
<td>Excentricidade orbital</td>
<td>0,04839</td>
</tr>
<tr>
<td>Período sideral (anos)</td>
<td>11,86179</td>
</tr>
<tr>
<td>Inclinação orbital</td>
<td>1,304°</td>
</tr>
<tr>
<td>Velocidade orbital média (km/s)</td>
<td>13,07</td>
</tr>
<tr>
<td>Período de rotação (horas)</td>
<td>9,9250</td>
</tr>
<tr>
<td>Inclinação do eixo de rotação</td>
<td>3,13°</td>
</tr>
<tr>
<td>Magnitude visual máxima</td>
<td>-2,94</td>
</tr>
<tr>
<td>Número de Satélites</td>
<td>63</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DADOS FÍSICOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raio equatorial (km)</td>
</tr>
<tr>
<td>Massa (kg)</td>
</tr>
<tr>
<td>Volume (km³)</td>
</tr>
<tr>
<td>Densidade média (g/cm³)</td>
</tr>
<tr>
<td>Gravidade à superfície no equador (m/s²)</td>
</tr>
<tr>
<td>Velocidade de escape equatorial (km/s)</td>
</tr>
<tr>
<td>Temperatura média à superfície (K)</td>
</tr>
<tr>
<td>Albedo normal</td>
</tr>
<tr>
<td>Momento magnético dipolar (Gauss R³)</td>
</tr>
<tr>
<td>Pressão atmosférica à superfície (mbar)</td>
</tr>
<tr>
<td>Composição da atmosfera (% vol)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DADOS HISTÓRICOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Missões espaciais</td>
</tr>
</tbody>
</table>
heliocentrismo copernicano (figura 12.1). Nos quatro capítulos seguintes veremos os satélites galileanos com mais pormenor.

Hoje estão catalogados 63 satélites de Júpiter, 50 dos quais têm nomes. Além disso, a missão Voyager (figura 12.2) descobriu em 1979 que, tal como Saturno, Júpiter também tem anéis. Estes são, contudo, menos densos, menos extensos e menos reflectivos que os de Saturno (figura 12.3). Os seus baixos albedos (cerca de 0,05) parecem dever-se a serem principalmente compostos de poeiras líticas (rochosas).
18. **Saturno**

Saturno é conhecido desde a mais remota antiguidade: era o Cronos dos gregos (pai de Zeus – Júpiter). Mas só depois de Galileu, incrédulo, ter observado pela primeira vez os seus anéis em 1610, ficou conhecido como a “jóia do Sistema Solar”. (Galileu chegou a referir-se a Saturno, numa carta em código - não fosse o diabo tecê-las - como “planeta com orelhas”...). Contudo, só Christiaan Huygens, em 1659, identificou correctamente a geometria dos anéis.

<table>
<thead>
<tr>
<th>SATURNO DADOS ASTRONÔMICOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orbita</td>
</tr>
<tr>
<td>Sol</td>
</tr>
<tr>
<td>Distância média ao Sol (UA)</td>
</tr>
<tr>
<td>9,57888</td>
</tr>
<tr>
<td>Excentricidade orbital</td>
</tr>
<tr>
<td>0,0565</td>
</tr>
<tr>
<td>Período sideral (anos)</td>
</tr>
<tr>
<td>29,45666</td>
</tr>
<tr>
<td>Inclinação orbital</td>
</tr>
<tr>
<td>2,485°</td>
</tr>
<tr>
<td>Velocidade orbital média (km/s)</td>
</tr>
<tr>
<td>9,69</td>
</tr>
<tr>
<td>Período de rotação (horas)</td>
</tr>
<tr>
<td>10,656</td>
</tr>
<tr>
<td>Inclinação do eixo de rotação</td>
</tr>
<tr>
<td>26,73°</td>
</tr>
<tr>
<td>Magnitude visual máxima</td>
</tr>
<tr>
<td>0,43</td>
</tr>
<tr>
<td>Número de Satélites</td>
</tr>
<tr>
<td>62</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SATURNO DADOS FÍSICOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raio equatorial (km)</td>
</tr>
<tr>
<td>60 268</td>
</tr>
<tr>
<td>Massa (kg)</td>
</tr>
<tr>
<td>568,46 X 10^{24}</td>
</tr>
<tr>
<td>Volume (km³)</td>
</tr>
<tr>
<td>82 713 X 10^{10}</td>
</tr>
<tr>
<td>Densidade média (g/cm³)</td>
</tr>
<tr>
<td>0,687</td>
</tr>
<tr>
<td>Gravidade à superfície no equador (m/s²)</td>
</tr>
<tr>
<td>8,96</td>
</tr>
<tr>
<td>Velocidade de escape equatorial (km/s)</td>
</tr>
<tr>
<td>35,49</td>
</tr>
<tr>
<td>Temperatura média à superfície (K)</td>
</tr>
<tr>
<td>134</td>
</tr>
<tr>
<td>Albedo normal</td>
</tr>
<tr>
<td>0,47</td>
</tr>
<tr>
<td>Momento magnético dipolar (Gauss R³)</td>
</tr>
<tr>
<td>0,210</td>
</tr>
<tr>
<td>Pressão atmosférica à superfície (mbar)</td>
</tr>
<tr>
<td>1000 (por convenção)</td>
</tr>
<tr>
<td>Composição da atmosfera (%)</td>
</tr>
<tr>
<td>H₂(96,3), He(3,25)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SATURNO DADOS HISTÓRICOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Descobridor</td>
</tr>
<tr>
<td>-</td>
</tr>
<tr>
<td>Data</td>
</tr>
<tr>
<td>-</td>
</tr>
<tr>
<td>Missões espaciais</td>
</tr>
<tr>
<td>Pioneer 11; Voyager 1,2;</td>
</tr>
<tr>
<td>Ulysses; Galileo Cassini/</td>
</tr>
<tr>
<td>Huygens</td>
</tr>
</tbody>
</table>
Só em 1977 foi descoberto outro sistema de anéis, em torno de Úrano. Hoje sabe-se que todos os planetas gigantes possuem tais sistemas, embora não se saiba por que motivo os anéis de Saturno são tão notáveis, em comparação com os dos outros planetas, nomeadamente pela sua complexidade. Essa complexidade começou a ser notada por outro astrónomo que deixou o seu nome ligado a Saturno, Giovanni Cassini, o primeiro a notar que o planeta não possuía só um anel, havendo uma divisão nítida, aparentemente vazia – hoje chamada divisão de Cassini.

A estrutura dos anéis de Saturno é fractal pelo que, à medida que temos imagens com maior resolução dos anéis, vamos encontrando novas divisões e novos anéis.
Em todo o caso, a divisão principal que hoje se aceita é a da tabela 18.1, parcialmente visível na figura 18.1.

<table>
<thead>
<tr>
<th>NOME</th>
<th>RAIO INTERIOR (km)</th>
<th>LARGURA (km)</th>
<th>MASSA (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anel D</td>
<td>67 000</td>
<td>7500</td>
<td>?</td>
</tr>
<tr>
<td>Divisão de Guérin</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Anel C</td>
<td>74 500</td>
<td>17 500</td>
<td>1.10x10^{18}</td>
</tr>
<tr>
<td>Divisão de Maxwell</td>
<td>87 500</td>
<td>500</td>
<td>?</td>
</tr>
<tr>
<td>Anel B</td>
<td>92 000</td>
<td>25 500</td>
<td>2.80x10^{19}</td>
</tr>
<tr>
<td>Divisão de Cassini</td>
<td>115 800</td>
<td>4800</td>
<td>?</td>
</tr>
<tr>
<td>Anel A</td>
<td>122 200</td>
<td>14 600</td>
<td>6.20x10^{18}</td>
</tr>
<tr>
<td>Divisão de Encke</td>
<td>133 580</td>
<td>325</td>
<td>?</td>
</tr>
<tr>
<td>Anel F</td>
<td>140 210</td>
<td>30-500</td>
<td>?</td>
</tr>
<tr>
<td>Anel G</td>
<td>165 800</td>
<td>8 000</td>
<td>1x10^7</td>
</tr>
<tr>
<td>Anel E</td>
<td>180 000</td>
<td>30 000</td>
<td>?</td>
</tr>
</tbody>
</table>

Tabela 18.1 – Estrutura dos anéis de Saturno.

Os anéis de Saturno são tão visíveis devido ao seu albedo muito alto, ao contrário do dos outros planetas gasosos, e isto apesar de a sua espessura ser, em média, inferior a 1 km. Este alto albedo deve-se à sua composição, essencialmente partículas de gelos. Uma característica ainda não esclarecida são os raios nos anéis, primeiro observados por astrónomos amadores e mais tarde confirmados pela missão Voyager e, recentemente, pela Cassini (Figura 18.2).

Diáfanos, os anéis de Saturno só aparentemente são simples. O anel F, por exemplo, é uma trança de três anéis: dois deles muito mais retorcidos – e dobrados, mesmo – que o terceiro (figura 18.3).

Para além dos anéis, Saturno tem outras características que o tornam especial. Por exemplo, pela sua densidade: é o único planeta com densidade inferior à da água (0,7 g/cm³). Esse facto, associado à sua alta velocidade de rotação (um dia de Saturno dura 10 horas terrestres) faz com que
seja o planeta com maior achatamento polar (quase 10%).

A composição de Saturno não é muito diferente da de Júpiter, sendo muito semelhante à da nebulosa solar primordial: cerca de 97% de hidrogênio e 3% de hélio, com vestígios de gelo, metano, amoníaco e materiais líticos.

A estrutura interna de Saturno também é análoga à de Júpiter (figura 18.4). A um núcleo interno lítico, muito pequeno (menos de 10% do raio) a cerca de 12000 K, seguir-se-á uma camada composta de uma mistura de gelos de água, metano e amoníaco, à qual se seguirá uma camada de hidrogênio metálico, líquido, a uma pressão da ordem de 1 Mbar, responsável pelo campo magnético do planeta,
Cujo raio externo atingirá cerca de metade do raio planetário. É à interacção desse campo magnético com o vento solar que se devem as auroras (figura 18.5).

A camada exterior do planeta, a sua atmosfera, é composta essencialmente de uma mistura de hélio e hidrogénio molecular, nas proporções assinaladas, com uma transição gradual do estado líquido para o gasoso, à medida que as pressões e temperaturas diminuem.

A atmosfera de Saturno também é bandeada como a de Júpiter, embora menos nitidamente. Também aqui se encontram tempestades eléctricas (figura 18.6) e grandes tempestades ovais, com alguns milhares de km de diâmetro (figura 18.7).

A característica mais estranha deste estranho e belíssimo planeta também se encontra na atmosfera: um inexplicado anel hexagonal que rodeia o pólo Norte, primeiro observado pela missão Voyager, em 1980 e 1981, e que lá
permanecia quando foi fotografado pela sonda Cassini, em 2006 (figura 18.8).

Vamos encontrar muitos mais motivos de interesse e espanto nos satélites de Saturno, principalmente no maior de todos: Titã.

Figura 18.7 – Uma “pequena” mancha, também em Saturno. Voyager/NASA/JPL.

Figura 18.8 – O anel hexagonal em torno do pólo Norte. Cassini/NASA/JPL.
19. Titã

Titã foi o primeiro satélite de Saturno a ser descoberto, por Christiaan Huygens, em 1655.

A muitos títulos, Titã é um planeta notável. Até recentemente, pensava-se que seria o maior satélite do Sistema Solar – aliás, apesar da sua distância à Terra, é visível em instrumentos amadores. Só depois das imagens do telescópio espacial Hubble se descobriu que a superfície exterior de Titã é, na verdade, uma densa atmosfera, com

<table>
<thead>
<tr>
<th>Titã</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dados Astronômicos</td>
</tr>
<tr>
<td>Orbita</td>
</tr>
<tr>
<td>Distância média a Saturno (km)</td>
</tr>
<tr>
<td>Excentricidade orbital</td>
</tr>
<tr>
<td>Período sideral (dias)</td>
</tr>
<tr>
<td>Inclinação orbital</td>
</tr>
<tr>
<td>Velocidade orbital média (km/s)</td>
</tr>
<tr>
<td>Período de rotação (dias)</td>
</tr>
<tr>
<td>Inclinação do eixo de rotação</td>
</tr>
<tr>
<td>Magnitude visual máxima</td>
</tr>
<tr>
<td>Número de Satélites</td>
</tr>
</tbody>
</table>

| **Dados Físicos** |
Raio equatorial (km)	2575
Massa (kg)	1,3455 X 10^{23}
Volume (km³)	7,15 X 10^{10}
Densidade média (g/cm³)	1,881
Gravidade à superfície no equador (m/s²)	1,35
Velocidade de escape equatorial (km/s)	2,65
Temperatura média à superfície (K)	93
Albedo normal	0,22
Momento magnético dipolar (Gauss R³)	-
Pressão atmosférica à superfície (mbar)	1500
Composição da atmosfera (%) N₂(90), Ar(6), CH₄(3)	

| **Dados Históricos** |
Descobridor	C. Huygens
Data	1655
Missões espaciais	Voyager 2, Galileu, Cassini/Huygens

Figura 19.1 – Titã visto da Terra. HST / NASA / JPL.

Versão integral disponível em digitalis.uc.pt
uma pressão à superfície uma vez e meia mais alta que a da Terra (1,5 bar). Mesmo assim, Titã é maior que Plutão e Mercúrio e só um pouco menor que Ganimedes.

A atmosfera de Titã deve ser semelhante à da Terra primordial: composta essencialmente de azoto molecular (mais de 90%), com cerca de 6% de árgon, 3% de metano e traços de pelo menos uma dúzia de compostos orgânicos como o etano, o ácido cianídrico e o dióxido de carbono. Dada a temperatura média à superfície da ordem dos 93 K (-180 ºC) a água só pode existir no estado sólido.

Além disso, o planeta encontra-se coberto de nuvens que o ocultam da observação no espectro visível, um pouco como em Vénus. Essas nuvens são compostas principalmente de metano, etano e outros compostos orgânicos ainda não identificados, que serão responsáveis pela sua coloração alaranjada (figura 19.1).

As imagens obtidas pelo Hubble no domínio do infravermelho já sugeriam que Titã tivesse um

Observatório Astronómico da Universidade de Lisboa: http://www.oal.ul.pt

Russian Space Research Institute (a investigação espacial na Rússia hoje): http://www.iki.rssi.ru/eng/index.htm

Small Bodies Data Archives (dados sobre os pequenos corpos do Sistema Solar (asteróides, cometas e poeiras): http://pdssbn.astro.umd.edu/sbnhtml/

Space Telescope Science Institute (a melhor fonte de dados e imagens do Telescópio Espacial Huble): http://www.stsci.edu/resources/

The Meteorite Market (um site de venda de meteoritos, com muita informação): http://www.meteoritemarket.com

The Planetary Society (Sociedade Planetária, fundada por Carl Sagan): http://planetary.org/

Welcome to the Planets (do JPL, com muitas imagens): http://pds.jpl.nasa.gov/planets/

Zarya (a melhor fonte de informação sobre os programas espaciais soviético e russo): http://www.zarya.info/
29. **Cronologia da exploração do Sistema Solar**

Listam-se, na tabela seguinte, todas as missões que tiveram algum sucesso, mesmo que não tenham cumprido integralmente o plano de missão (o que é mais frequente do que se pensa). Um exemplo extremo é a missão Mars Express / Beagle 2, em que o módulo de pouso Beagle 2 se despenhou em Marte sem nunca comunicar com a Terra. Mas chegou lá...

<table>
<thead>
<tr>
<th>ANO</th>
<th>NOME</th>
<th>OBJECTIVO</th>
<th>PAÍS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1957</td>
<td>Sputnik 1</td>
<td>Terra</td>
<td>URSS</td>
</tr>
<tr>
<td></td>
<td>Sputnik 2</td>
<td>Terra</td>
<td>URSS</td>
</tr>
<tr>
<td>1958</td>
<td>Explorer 1</td>
<td>Terra</td>
<td>EUA</td>
</tr>
<tr>
<td></td>
<td>Vanguard 1</td>
<td>Terra</td>
<td>EUA</td>
</tr>
<tr>
<td>1959</td>
<td>Luna 1</td>
<td>Lua</td>
<td>URSS</td>
</tr>
<tr>
<td></td>
<td>Pioneer 4</td>
<td>Lua</td>
<td>EUA</td>
</tr>
<tr>
<td></td>
<td>Luna 2</td>
<td>Lua</td>
<td>URSS</td>
</tr>
<tr>
<td></td>
<td>Luna 3</td>
<td>Lua</td>
<td>URSS</td>
</tr>
<tr>
<td>1960</td>
<td>Pioneer 5</td>
<td>Espaço</td>
<td>EUA</td>
</tr>
<tr>
<td>1961</td>
<td>Venera 1</td>
<td>Vénus</td>
<td>URSS</td>
</tr>
<tr>
<td></td>
<td>Vostok 1</td>
<td>Terra</td>
<td>URSS</td>
</tr>
<tr>
<td></td>
<td>Ranger 1</td>
<td>Lua</td>
<td>EUA</td>
</tr>
<tr>
<td></td>
<td>Ranger 2</td>
<td>Lua</td>
<td>EUA</td>
</tr>
<tr>
<td>1962</td>
<td>Ranger 3</td>
<td>Lua</td>
<td>EUA</td>
</tr>
<tr>
<td></td>
<td>Ranger 4</td>
<td>Lua</td>
<td>EUA</td>
</tr>
<tr>
<td></td>
<td>Mariner 2</td>
<td>Vénus</td>
<td>EUA</td>
</tr>
<tr>
<td></td>
<td>Zond 1</td>
<td>Vénus</td>
<td>URSS</td>
</tr>
<tr>
<td>1964</td>
<td>Ranger 7</td>
<td>Lua</td>
<td>EUA</td>
</tr>
<tr>
<td></td>
<td>Mariner 4</td>
<td>Marte</td>
<td>EUA</td>
</tr>
<tr>
<td>1965</td>
<td>Ranger 8</td>
<td>Lua</td>
<td>EUA</td>
</tr>
<tr>
<td></td>
<td>Ranger 9</td>
<td>Lua</td>
<td>EUA</td>
</tr>
<tr>
<td></td>
<td>Luna 5</td>
<td>Lua</td>
<td>URSS</td>
</tr>
<tr>
<td></td>
<td>Luna 6</td>
<td>Lua</td>
<td>URSS</td>
</tr>
<tr>
<td></td>
<td>Zond 3</td>
<td>Lua</td>
<td>URSS</td>
</tr>
<tr>
<td></td>
<td>Luna 7</td>
<td>Lua</td>
<td>URSS</td>
</tr>
<tr>
<td></td>
<td>Venera 2</td>
<td>Vénus</td>
<td>URSS</td>
</tr>
<tr>
<td></td>
<td>Venera 3</td>
<td>Vénus</td>
<td>URSS</td>
</tr>
<tr>
<td></td>
<td>Cosmos 96</td>
<td>Vénus</td>
<td>URSS</td>
</tr>
<tr>
<td>Ano</td>
<td>Nome</td>
<td>Objectivo</td>
<td>País</td>
</tr>
<tr>
<td>-----</td>
<td>---------------</td>
<td>-----------</td>
<td>-------</td>
</tr>
<tr>
<td>1966</td>
<td>Luna 8</td>
<td>Lua</td>
<td>URSS</td>
</tr>
<tr>
<td></td>
<td>Pioneer 6</td>
<td>Espaço</td>
<td>EUA</td>
</tr>
<tr>
<td></td>
<td>Luna 9</td>
<td>Lua</td>
<td>URSS</td>
</tr>
<tr>
<td></td>
<td>Luna 10</td>
<td>Lua</td>
<td>URSS</td>
</tr>
<tr>
<td></td>
<td>Surveyor 1</td>
<td>Lua</td>
<td>EUA</td>
</tr>
<tr>
<td></td>
<td>Lunar Orbiter 1</td>
<td>Lua</td>
<td>EUA</td>
</tr>
<tr>
<td></td>
<td>Pioneer 7</td>
<td>Espaço</td>
<td>EUA</td>
</tr>
<tr>
<td></td>
<td>Luna 11</td>
<td>Lua</td>
<td>URSS</td>
</tr>
<tr>
<td></td>
<td>Surveyor 2</td>
<td>Lua</td>
<td>EUA</td>
</tr>
<tr>
<td></td>
<td>Luna 12</td>
<td>Lua</td>
<td>URSS</td>
</tr>
<tr>
<td></td>
<td>Lunar Orbiter 2</td>
<td>Lua</td>
<td>EUA</td>
</tr>
<tr>
<td></td>
<td>Luna 13</td>
<td>Lua</td>
<td>URSS</td>
</tr>
<tr>
<td>1967</td>
<td>Lunar Orbiter 3</td>
<td>Lua</td>
<td>EUA</td>
</tr>
<tr>
<td></td>
<td>Surveyor 3</td>
<td>Lua</td>
<td>EUA</td>
</tr>
<tr>
<td></td>
<td>Lunar Orbiter 4</td>
<td>Lua</td>
<td>EUA</td>
</tr>
<tr>
<td></td>
<td>Venera 4</td>
<td>Vénus</td>
<td>URSS</td>
</tr>
<tr>
<td></td>
<td>Mariner 5</td>
<td>Vénus</td>
<td>EUA</td>
</tr>
<tr>
<td></td>
<td>Surveyor 4</td>
<td>Lua</td>
<td>EUA</td>
</tr>
<tr>
<td></td>
<td>Explorer 35 (IMP-E)</td>
<td>Lua</td>
<td>EUA</td>
</tr>
<tr>
<td></td>
<td>Lunar Orbiter 5</td>
<td>Lua</td>
<td>EUA</td>
</tr>
<tr>
<td></td>
<td>Surveyor 5</td>
<td>Lua</td>
<td>EUA</td>
</tr>
<tr>
<td></td>
<td>Surveyor 6</td>
<td>Lua</td>
<td>EUA</td>
</tr>
<tr>
<td></td>
<td>Pioneer 8</td>
<td>Espaço</td>
<td>EUA</td>
</tr>
<tr>
<td>1968</td>
<td>Surveyor 7</td>
<td>Lua</td>
<td>EUA</td>
</tr>
<tr>
<td></td>
<td>Zond 4</td>
<td>Lua</td>
<td>URSS</td>
</tr>
<tr>
<td></td>
<td>Luna 14</td>
<td>Lua</td>
<td>URSS</td>
</tr>
<tr>
<td></td>
<td>Zond 5</td>
<td>Lua</td>
<td>URSS</td>
</tr>
<tr>
<td></td>
<td>Pioneer 9</td>
<td>Espaço</td>
<td>EUA</td>
</tr>
<tr>
<td></td>
<td>Zond 6</td>
<td>Lua</td>
<td>URSS</td>
</tr>
<tr>
<td>1969</td>
<td>Venera 5</td>
<td>Vénus</td>
<td>URSS</td>
</tr>
<tr>
<td></td>
<td>Venera 6</td>
<td>Vénus</td>
<td>URSS</td>
</tr>
<tr>
<td></td>
<td>Mariner 6</td>
<td>Marte</td>
<td>EUA</td>
</tr>
<tr>
<td></td>
<td>Apollo 9</td>
<td>Lua</td>
<td>EUA</td>
</tr>
<tr>
<td></td>
<td>Mariner 7</td>
<td>Marte</td>
<td>EUA</td>
</tr>
<tr>
<td></td>
<td>Apollo 10</td>
<td>Lua</td>
<td>EUA</td>
</tr>
<tr>
<td></td>
<td>Luna 15</td>
<td>Lua</td>
<td>URSS</td>
</tr>
<tr>
<td></td>
<td>Apollo 11</td>
<td>Lua</td>
<td>EUA</td>
</tr>
<tr>
<td></td>
<td>Zond 7</td>
<td>Lua</td>
<td>URSS</td>
</tr>
<tr>
<td></td>
<td>Apollo 12</td>
<td>Lua</td>
<td>EUA</td>
</tr>
<tr>
<td>1970</td>
<td>Apollo 13</td>
<td>Lua</td>
<td>EUA</td>
</tr>
<tr>
<td></td>
<td>Venera 7</td>
<td>Vénus</td>
<td>EUA</td>
</tr>
<tr>
<td></td>
<td>Luna 16</td>
<td>Vénus</td>
<td>URSS</td>
</tr>
<tr>
<td></td>
<td>Zond 8</td>
<td>Lua</td>
<td>URSS</td>
</tr>
<tr>
<td>ANO</td>
<td>NOME</td>
<td>OBJETIVO</td>
<td>PAÍS</td>
</tr>
<tr>
<td>-----</td>
<td>--------------------------------</td>
<td>-------------------</td>
<td>-------</td>
</tr>
<tr>
<td>1971</td>
<td>Apollo 14</td>
<td>Lua</td>
<td>EUA</td>
</tr>
<tr>
<td>1971</td>
<td>Mariner 9</td>
<td>Marte</td>
<td>EUA</td>
</tr>
<tr>
<td>1971</td>
<td>Mars 2</td>
<td>Marte</td>
<td>URSS</td>
</tr>
<tr>
<td>1971</td>
<td>Apollo 15</td>
<td>Lua</td>
<td>URSS</td>
</tr>
<tr>
<td>1971</td>
<td>Luna 18</td>
<td>Lua</td>
<td>URSS</td>
</tr>
<tr>
<td>1971</td>
<td>Luna 19</td>
<td>Lua</td>
<td>URSS</td>
</tr>
<tr>
<td>1972</td>
<td>Luna 20</td>
<td>Lua</td>
<td>URSS</td>
</tr>
<tr>
<td>1972</td>
<td>Pioneer 10</td>
<td>Júpiter</td>
<td>EUA</td>
</tr>
<tr>
<td>1972</td>
<td>Venera 8</td>
<td>Vénus</td>
<td>URSS</td>
</tr>
<tr>
<td>1972</td>
<td>Apollo 16</td>
<td>Lua</td>
<td>EUA</td>
</tr>
<tr>
<td>1972</td>
<td>Apollo 17</td>
<td>Lua</td>
<td>EUA</td>
</tr>
<tr>
<td>1973</td>
<td>Luna 21/Lunokhod 2</td>
<td>Lua</td>
<td>URSS</td>
</tr>
<tr>
<td>1973</td>
<td>Pioneer 11</td>
<td>Júpiter, Saturno</td>
<td>EUA</td>
</tr>
<tr>
<td>1974</td>
<td>Skylab</td>
<td>Terra</td>
<td>EUA</td>
</tr>
<tr>
<td>1974</td>
<td>Explorer 49 (ERA-B)</td>
<td>Lua</td>
<td>EUA</td>
</tr>
<tr>
<td>1974</td>
<td>Mars 4</td>
<td>Marte</td>
<td>URSS</td>
</tr>
<tr>
<td>1974</td>
<td>Mars 5</td>
<td>Marte</td>
<td>URSS</td>
</tr>
<tr>
<td>1974</td>
<td>Mars 6</td>
<td>Marte</td>
<td>URSS</td>
</tr>
<tr>
<td>1974</td>
<td>Mariner 10</td>
<td>Vénus</td>
<td>EUA</td>
</tr>
<tr>
<td>1975</td>
<td>Luna 22</td>
<td>Lua</td>
<td>URSS</td>
</tr>
<tr>
<td>1975</td>
<td>Luna 23</td>
<td>Lua</td>
<td>URSS</td>
</tr>
<tr>
<td>1975</td>
<td>Helios-A</td>
<td>Sol</td>
<td>EUA</td>
</tr>
<tr>
<td>1975</td>
<td>Venera 9</td>
<td>Vénus</td>
<td>URSS</td>
</tr>
<tr>
<td>1975</td>
<td>Venera 10</td>
<td>Vénus</td>
<td>URSS</td>
</tr>
<tr>
<td>1976</td>
<td>Viking 1</td>
<td>Marte</td>
<td>EUA</td>
</tr>
<tr>
<td>1976</td>
<td>Viking 2</td>
<td>Marte</td>
<td>EUA</td>
</tr>
<tr>
<td>1976</td>
<td>Helios-B</td>
<td>Sol</td>
<td>EUA</td>
</tr>
<tr>
<td>1976</td>
<td>Luna 24</td>
<td>Lua</td>
<td>URSS</td>
</tr>
<tr>
<td>1977</td>
<td>Voyager 2</td>
<td>Júpiter, Saturno, Úrano, Neptuno</td>
<td>EUA</td>
</tr>
<tr>
<td>1977</td>
<td>Voyager 1</td>
<td>Júpiter, Saturno</td>
<td>EUA</td>
</tr>
<tr>
<td>1978</td>
<td>Pioneer Venus 1</td>
<td>Vénus</td>
<td>EUA</td>
</tr>
<tr>
<td>1978</td>
<td>Pioneer Venus 2</td>
<td>Vénus</td>
<td>EUA</td>
</tr>
<tr>
<td>1978</td>
<td>ISEE-3</td>
<td>Sol</td>
<td>EUA/UE</td>
</tr>
<tr>
<td>1978</td>
<td>Venera 11</td>
<td>Vénus</td>
<td>URSS</td>
</tr>
<tr>
<td>1978</td>
<td>Venera 12</td>
<td>Vénus</td>
<td>URSS</td>
</tr>
<tr>
<td>1981</td>
<td>Venera 13</td>
<td>Vénus</td>
<td>URSS</td>
</tr>
<tr>
<td>1981</td>
<td>Venera 14</td>
<td>Vénus</td>
<td>URSS</td>
</tr>
<tr>
<td>1983</td>
<td>Venera 15</td>
<td>Vénus</td>
<td>URSS</td>
</tr>
<tr>
<td>1983</td>
<td>Venera 16</td>
<td>Vénus</td>
<td>URSS</td>
</tr>
<tr>
<td>1984</td>
<td>Vega 1</td>
<td>Vénus</td>
<td>URSS</td>
</tr>
<tr>
<td>Ano</td>
<td>Nome</td>
<td>Objectivo</td>
<td>País</td>
</tr>
<tr>
<td>------</td>
<td>-----------------------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>1966</td>
<td>Luna 8</td>
<td>Lua</td>
<td>URSS</td>
</tr>
<tr>
<td></td>
<td>Pioneer 6</td>
<td>Espaço</td>
<td>EUA</td>
</tr>
<tr>
<td></td>
<td>Luna 9</td>
<td>Lua</td>
<td>URSS</td>
</tr>
<tr>
<td></td>
<td>Luna 10</td>
<td>Lua</td>
<td>URSS</td>
</tr>
<tr>
<td></td>
<td>Surveyor 1</td>
<td>Lua</td>
<td>EUA</td>
</tr>
<tr>
<td></td>
<td>Lunar Orbiter 1</td>
<td>Lua</td>
<td>EUA</td>
</tr>
<tr>
<td></td>
<td>Pioneer 7</td>
<td>Espaço</td>
<td>EUA</td>
</tr>
<tr>
<td></td>
<td>Luna 11</td>
<td>Lua</td>
<td>URSS</td>
</tr>
<tr>
<td></td>
<td>Surveyor 2</td>
<td>Lua</td>
<td>EUA</td>
</tr>
<tr>
<td></td>
<td>Luna 12</td>
<td>Lua</td>
<td>URSS</td>
</tr>
<tr>
<td></td>
<td>Lunar Orbiter 2</td>
<td>Lua</td>
<td>EUA</td>
</tr>
<tr>
<td></td>
<td>Luna 13</td>
<td>Lua</td>
<td>URSS</td>
</tr>
<tr>
<td>1967</td>
<td>Lunar Orbiter 3</td>
<td>Lua</td>
<td>EUA</td>
</tr>
<tr>
<td></td>
<td>Surveyor 3</td>
<td>Lua</td>
<td>EUA</td>
</tr>
<tr>
<td></td>
<td>Lunar Orbiter 4</td>
<td>Lua</td>
<td>EUA</td>
</tr>
<tr>
<td></td>
<td>Venera 4</td>
<td>Vénus</td>
<td>URSS</td>
</tr>
<tr>
<td></td>
<td>Mariner 5</td>
<td>Vénus</td>
<td>EUA</td>
</tr>
<tr>
<td></td>
<td>Surveyor 4</td>
<td>Lua</td>
<td>EUA</td>
</tr>
<tr>
<td></td>
<td>Explorer 35 (IMP-E)</td>
<td>Lua</td>
<td>EUA</td>
</tr>
<tr>
<td></td>
<td>Lunar Orbiter 5</td>
<td>Lua</td>
<td>EUA</td>
</tr>
<tr>
<td></td>
<td>Surveyor 5</td>
<td>Lua</td>
<td>EUA</td>
</tr>
<tr>
<td></td>
<td>Surveyor 6</td>
<td>Lua</td>
<td>EUA</td>
</tr>
<tr>
<td></td>
<td>Pioneer 8</td>
<td>Espaço</td>
<td>EUA</td>
</tr>
<tr>
<td>1968</td>
<td>Surveyor 7</td>
<td>Lua</td>
<td>EUA</td>
</tr>
<tr>
<td></td>
<td>Zond 4</td>
<td>Lua</td>
<td>URSS</td>
</tr>
<tr>
<td></td>
<td>Luna 14</td>
<td>Lua</td>
<td>URSS</td>
</tr>
<tr>
<td></td>
<td>Zond 5</td>
<td>Lua</td>
<td>URSS</td>
</tr>
<tr>
<td></td>
<td>Pioneer 9</td>
<td>Espaço</td>
<td>EUA</td>
</tr>
<tr>
<td></td>
<td>Zond 6</td>
<td>Lua</td>
<td>URSS</td>
</tr>
<tr>
<td>1969</td>
<td>Venera 5</td>
<td>Vénus</td>
<td>URSS</td>
</tr>
<tr>
<td></td>
<td>Venera 6</td>
<td>Vénus</td>
<td>URSS</td>
</tr>
<tr>
<td></td>
<td>Mariner 6</td>
<td>Marte</td>
<td>EUA</td>
</tr>
<tr>
<td></td>
<td>Apollo 9</td>
<td>Lua</td>
<td>EUA</td>
</tr>
<tr>
<td></td>
<td>Mariner 7</td>
<td>Marte</td>
<td>EUA</td>
</tr>
<tr>
<td></td>
<td>Apollo 10</td>
<td>Lua</td>
<td>EUA</td>
</tr>
<tr>
<td></td>
<td>Luna 15</td>
<td>Lua</td>
<td>URSS</td>
</tr>
<tr>
<td></td>
<td>Apollo 11</td>
<td>Lua</td>
<td>EUA</td>
</tr>
<tr>
<td></td>
<td>Zond 7</td>
<td>Lua</td>
<td>URSS</td>
</tr>
<tr>
<td></td>
<td>Apollo 12</td>
<td>Lua</td>
<td>EUA</td>
</tr>
<tr>
<td>1970</td>
<td>Apollo 13</td>
<td>Lua</td>
<td>EUA</td>
</tr>
<tr>
<td></td>
<td>Venera 7</td>
<td>Vénus</td>
<td>EUA</td>
</tr>
<tr>
<td></td>
<td>Luna 16</td>
<td>Vénus</td>
<td>URSS</td>
</tr>
<tr>
<td></td>
<td>Zond 8</td>
<td>Lua</td>
<td>URSS</td>
</tr>
<tr>
<td></td>
<td>Luna 17/Lunokhod 1</td>
<td>Lua</td>
<td>URSS</td>
</tr>
<tr>
<td>ANO</td>
<td>NOME</td>
<td>OBJECTIVO</td>
<td>PAÍS</td>
</tr>
<tr>
<td>-----</td>
<td>----------------</td>
<td>-----------------</td>
<td>------------</td>
</tr>
<tr>
<td>1971</td>
<td>Apollo 14</td>
<td>Lua</td>
<td>EUA</td>
</tr>
<tr>
<td></td>
<td>Mariner 9</td>
<td>Marte</td>
<td>EUA</td>
</tr>
<tr>
<td></td>
<td>Mars 2</td>
<td>Marte</td>
<td>URSS</td>
</tr>
<tr>
<td></td>
<td>Mars 3</td>
<td>Marte</td>
<td>URSS</td>
</tr>
<tr>
<td></td>
<td>Apollo 15</td>
<td>Lua</td>
<td>EUA</td>
</tr>
<tr>
<td></td>
<td>Luna 18</td>
<td>Lua</td>
<td>URSS</td>
</tr>
<tr>
<td></td>
<td>Luna 19</td>
<td>Lua</td>
<td>URSS</td>
</tr>
<tr>
<td>1972</td>
<td>Luna 20</td>
<td>Lua</td>
<td>URSS</td>
</tr>
<tr>
<td></td>
<td>Pioneer 10</td>
<td>Júpiter</td>
<td>EUA</td>
</tr>
<tr>
<td></td>
<td>Venera 8</td>
<td>Vénus</td>
<td>URSS</td>
</tr>
<tr>
<td></td>
<td>Apollo 16</td>
<td>Lua</td>
<td>EUA</td>
</tr>
<tr>
<td></td>
<td>Apollo 17</td>
<td>Lua</td>
<td>EUA</td>
</tr>
<tr>
<td>1973</td>
<td>Luna 21/Lunokhod 2</td>
<td>Lua</td>
<td>URSS</td>
</tr>
<tr>
<td></td>
<td>Pioneer 11</td>
<td>Júpiter, Saturno</td>
<td>EUA</td>
</tr>
<tr>
<td></td>
<td>Skylab</td>
<td>Terra</td>
<td>EUA</td>
</tr>
<tr>
<td></td>
<td>Explorer 49 (ERA-B)</td>
<td>Lua</td>
<td>EUA</td>
</tr>
<tr>
<td></td>
<td>Mars 4</td>
<td>Marte</td>
<td>URSS</td>
</tr>
<tr>
<td></td>
<td>Mars 5</td>
<td>Marte</td>
<td>URSS</td>
</tr>
<tr>
<td></td>
<td>Mars 6</td>
<td>Marte</td>
<td>URSS</td>
</tr>
<tr>
<td></td>
<td>Mariner 10</td>
<td>Vénus</td>
<td>EUA</td>
</tr>
<tr>
<td>1974</td>
<td>Luna 22</td>
<td>Lua</td>
<td>URSS</td>
</tr>
<tr>
<td></td>
<td>Luna 23</td>
<td>Lua</td>
<td>URSS</td>
</tr>
<tr>
<td></td>
<td>Helios-A</td>
<td>Sol</td>
<td>EUA</td>
</tr>
<tr>
<td>1975</td>
<td>Venera 9</td>
<td>Vénus</td>
<td>URSS</td>
</tr>
<tr>
<td></td>
<td>Venera 10</td>
<td>Vénus</td>
<td>URSS</td>
</tr>
<tr>
<td></td>
<td>Viking 1</td>
<td>Marte</td>
<td>EUA</td>
</tr>
<tr>
<td></td>
<td>Viking 2</td>
<td>Marte</td>
<td>EUA</td>
</tr>
<tr>
<td>1976</td>
<td>Helios-B</td>
<td>Sol</td>
<td>EUA</td>
</tr>
<tr>
<td></td>
<td>Luna 24</td>
<td>Lua</td>
<td>URSS</td>
</tr>
<tr>
<td>1977</td>
<td>Voyager 2</td>
<td>Júpiter, Saturno, Úrano, Neptuno</td>
<td>EUA</td>
</tr>
<tr>
<td></td>
<td>Voyager 1</td>
<td>Júpiter, Saturno</td>
<td>EUA</td>
</tr>
<tr>
<td>1978</td>
<td>Pioneer Venus 1</td>
<td>Vénus</td>
<td>EUA</td>
</tr>
<tr>
<td></td>
<td>Pioneer Venus 2</td>
<td>Vénus</td>
<td>EUA</td>
</tr>
<tr>
<td></td>
<td>ISEE-3</td>
<td>Sol</td>
<td>EUA/UE</td>
</tr>
<tr>
<td></td>
<td>Venera 11</td>
<td>Vénus</td>
<td>URSS</td>
</tr>
<tr>
<td></td>
<td>Venera 12</td>
<td>Vénus</td>
<td>URSS</td>
</tr>
<tr>
<td></td>
<td>Venera 13</td>
<td>Vénus</td>
<td>URSS</td>
</tr>
<tr>
<td></td>
<td>Venera 14</td>
<td>Vénus</td>
<td>URSS</td>
</tr>
<tr>
<td></td>
<td>Venera 15</td>
<td>Vénus</td>
<td>URSS</td>
</tr>
<tr>
<td>1981</td>
<td>Venera 16</td>
<td>Vénus</td>
<td>URSS</td>
</tr>
<tr>
<td></td>
<td>Vega 1</td>
<td>Vénus</td>
<td>URSS</td>
</tr>
<tr>
<td></td>
<td>Vega 2</td>
<td>Vénus</td>
<td>URSS</td>
</tr>
<tr>
<td>1985</td>
<td>Sakigake</td>
<td>1 Halley</td>
<td>Japão</td>
</tr>
<tr>
<td></td>
<td>Giotto</td>
<td>1 Halley</td>
<td>UE</td>
</tr>
<tr>
<td>ANO</td>
<td>NOME</td>
<td>OBJECTIVO</td>
<td>País</td>
</tr>
<tr>
<td>------</td>
<td>-------------------------------</td>
<td>-------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>1988</td>
<td>Phobos 1</td>
<td>Marte</td>
<td>URSS</td>
</tr>
<tr>
<td></td>
<td>Phobos 2</td>
<td>Marte</td>
<td>URSS</td>
</tr>
<tr>
<td>1989</td>
<td>Magellan</td>
<td>Vénus</td>
<td>EUA</td>
</tr>
<tr>
<td></td>
<td>Galileo</td>
<td>Júpiter</td>
<td>EUA</td>
</tr>
<tr>
<td>1990</td>
<td>Hiten</td>
<td>Lua</td>
<td>Japão</td>
</tr>
<tr>
<td></td>
<td>Hubble Space Telescope</td>
<td></td>
<td>EUA/UE</td>
</tr>
<tr>
<td>1994</td>
<td>Ulysses</td>
<td>Júpiter</td>
<td>EUA/UE</td>
</tr>
<tr>
<td></td>
<td>Clementine</td>
<td>Lua</td>
<td>EUA</td>
</tr>
<tr>
<td>1995</td>
<td>SOHO</td>
<td>Sol</td>
<td>EUA</td>
</tr>
<tr>
<td></td>
<td>Mars Global Surveyor</td>
<td>Marte</td>
<td>EUA</td>
</tr>
<tr>
<td>1996</td>
<td>Mars Pathfinder</td>
<td>Marte</td>
<td>EUA</td>
</tr>
<tr>
<td>1997</td>
<td>ACE</td>
<td>Sol</td>
<td>EUA</td>
</tr>
<tr>
<td></td>
<td>Cassini/Huygens</td>
<td>Saturno, Titã</td>
<td>EUA/UE</td>
</tr>
<tr>
<td></td>
<td>AsiaSat 3/HGS-1</td>
<td>Lua</td>
<td>China</td>
</tr>
<tr>
<td>1998</td>
<td>Lunar Prospector</td>
<td>Lua</td>
<td>EUA</td>
</tr>
<tr>
<td></td>
<td>Deep Space 1 (DS1)</td>
<td>Cometas, Asteróides</td>
<td>EUA</td>
</tr>
<tr>
<td></td>
<td>Mars Climate Orbiter</td>
<td>Marte</td>
<td>EUA</td>
</tr>
<tr>
<td>1999</td>
<td>Mars Polar Lander</td>
<td>Marte</td>
<td>EUA</td>
</tr>
<tr>
<td></td>
<td>Stardust</td>
<td>Wild 2, Tempel 1</td>
<td>EUA</td>
</tr>
<tr>
<td>2001</td>
<td>2001 Mars Odyssey</td>
<td>Marte</td>
<td>EUA</td>
</tr>
<tr>
<td></td>
<td>Genesis</td>
<td>Sol</td>
<td>EUA</td>
</tr>
<tr>
<td>2003</td>
<td>Hayabusa (Muses-C)</td>
<td>25143 Itokawa</td>
<td>Japão</td>
</tr>
<tr>
<td></td>
<td>MER - Opportunity</td>
<td>Marte</td>
<td>EUA</td>
</tr>
<tr>
<td></td>
<td>MER - Spirit</td>
<td>Marte</td>
<td>EUA</td>
</tr>
<tr>
<td></td>
<td>Mars Express/Beagle 2</td>
<td>Marte</td>
<td>UE</td>
</tr>
<tr>
<td></td>
<td>SMART 1</td>
<td>Lua</td>
<td>UE</td>
</tr>
<tr>
<td>2004</td>
<td>Rosetta</td>
<td>67P/Churyumov-Gerassimenko</td>
<td>UE</td>
</tr>
<tr>
<td></td>
<td>MESSENGER</td>
<td>Mercúrio</td>
<td>EUA</td>
</tr>
<tr>
<td>2005</td>
<td>Deep Impact</td>
<td>9P/Tempel</td>
<td>EUA</td>
</tr>
<tr>
<td></td>
<td>Mars Reconnaissance Orbiter</td>
<td>Marte</td>
<td>EUA</td>
</tr>
<tr>
<td></td>
<td>Venus Express</td>
<td>Vénus</td>
<td>UE</td>
</tr>
<tr>
<td>2006</td>
<td>New Horizons</td>
<td>Plutão/Cintura de Kuiper</td>
<td>EUA</td>
</tr>
<tr>
<td></td>
<td>Hinode</td>
<td>Sol</td>
<td>Japão/EUA</td>
</tr>
<tr>
<td></td>
<td>STEREO</td>
<td>Sol</td>
<td>EUA</td>
</tr>
<tr>
<td>2007</td>
<td>Phoenix</td>
<td>Marte</td>
<td>EUA</td>
</tr>
<tr>
<td></td>
<td>Kaguya</td>
<td>Lua</td>
<td>Japão</td>
</tr>
<tr>
<td></td>
<td>Dawn</td>
<td>Ceres, Vesta</td>
<td>EUA</td>
</tr>
<tr>
<td></td>
<td>Chang’e 1</td>
<td>Lua</td>
<td>China</td>
</tr>
<tr>
<td>2008</td>
<td>Chandrayaan 1</td>
<td>Lua</td>
<td>Índia</td>
</tr>
<tr>
<td>2009</td>
<td>Lunar Reconnaissance Orbiter</td>
<td>Lua</td>
<td>EUA</td>
</tr>
</tbody>
</table>

Versão integral disponível em digitalis.uc.pt
<table>
<thead>
<tr>
<th>Ano</th>
<th>Nome</th>
<th>Objetivo</th>
<th>País</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>PICARD</td>
<td>Sol</td>
<td>UE</td>
</tr>
<tr>
<td></td>
<td>Solar Dynamics Observatory</td>
<td>Sol</td>
<td>EUA</td>
</tr>
<tr>
<td></td>
<td>PLANET-C</td>
<td>Vénus</td>
<td>Japão</td>
</tr>
<tr>
<td></td>
<td>Chang'e 2</td>
<td>Lua</td>
<td>China</td>
</tr>
<tr>
<td>2011</td>
<td>Phobos-Grunt</td>
<td>Fobos, Marte</td>
<td>Rússia</td>
</tr>
<tr>
<td></td>
<td>Yinghuo</td>
<td>Marte</td>
<td>China</td>
</tr>
<tr>
<td></td>
<td>Juno</td>
<td>Júpiter</td>
<td>EUA</td>
</tr>
<tr>
<td></td>
<td>GRAIL</td>
<td>Lua</td>
<td>EUA</td>
</tr>
<tr>
<td></td>
<td>Mars Science Laboratory</td>
<td>Marte</td>
<td>EUA</td>
</tr>
<tr>
<td>2012</td>
<td>Luna-Glob</td>
<td>Lua</td>
<td>Rússia</td>
</tr>
<tr>
<td>2013</td>
<td>MAVEN</td>
<td>Marte</td>
<td>EUA</td>
</tr>
<tr>
<td></td>
<td>Chang'e 3 Rover</td>
<td>Lua</td>
<td>China</td>
</tr>
<tr>
<td></td>
<td>Chandrayaan 2</td>
<td>Lua</td>
<td>Índia/Rússia</td>
</tr>
<tr>
<td></td>
<td>Selene-2</td>
<td>Lua</td>
<td>Japão</td>
</tr>
<tr>
<td>2014</td>
<td>BepiColombo</td>
<td>Mercúrio</td>
<td>UE/Japão</td>
</tr>
<tr>
<td></td>
<td>Luna-Grunt</td>
<td>Lua</td>
<td>Rússia</td>
</tr>
<tr>
<td></td>
<td>MoonLITE</td>
<td>Lua</td>
<td>GB</td>
</tr>
<tr>
<td>2015</td>
<td>Solar Orbiter</td>
<td>Sol</td>
<td>UE</td>
</tr>
<tr>
<td></td>
<td>Solar Probe</td>
<td>Sol</td>
<td>EUA</td>
</tr>
<tr>
<td></td>
<td>Chandrayaan 3</td>
<td>Lua</td>
<td>Índia</td>
</tr>
<tr>
<td></td>
<td>Luna-Grunt 2</td>
<td>Lua</td>
<td>Rússia</td>
</tr>
<tr>
<td>2016</td>
<td>Venera-D</td>
<td>Vénus</td>
<td>Rússia</td>
</tr>
<tr>
<td>2017</td>
<td>Chang'e 4</td>
<td>Lua</td>
<td>China</td>
</tr>
<tr>
<td></td>
<td>ILN Node</td>
<td>Lua</td>
<td>EUA</td>
</tr>
<tr>
<td>2018</td>
<td>ExoMars</td>
<td>Marte</td>
<td>UE</td>
</tr>
<tr>
<td></td>
<td>Mars Sample Return Mission</td>
<td>Marte</td>
<td>EUA/EUA</td>
</tr>
<tr>
<td>2019</td>
<td>US Moonwalk</td>
<td>Lua</td>
<td>EUA</td>
</tr>
<tr>
<td>2020</td>
<td>Europa Jupiter System Mission</td>
<td>Júpiter</td>
<td>EUA/EUA</td>
</tr>
<tr>
<td></td>
<td>Titan Saturn System Mission</td>
<td>Titã</td>
<td>EUA/EUA</td>
</tr>
<tr>
<td></td>
<td>Luniy-Poligon</td>
<td>Lua</td>
<td>Rússia</td>
</tr>
<tr>
<td></td>
<td>Moon Orbiter</td>
<td>Lua</td>
<td>Coreia S</td>
</tr>
<tr>
<td>2025?</td>
<td>Missão Lunar tripulada</td>
<td>Lua</td>
<td>China</td>
</tr>
<tr>
<td></td>
<td>Missão Lunar não tripulada</td>
<td>Lua</td>
<td>Coreia S</td>
</tr>
<tr>
<td></td>
<td>Missão Lunar tripulada</td>
<td>Lua</td>
<td>Rússia</td>
</tr>
<tr>
<td></td>
<td>Aurora - Missão Lunar tripulada</td>
<td>Lua</td>
<td>UE</td>
</tr>
<tr>
<td>2030?</td>
<td>Missão tripulada a Marte</td>
<td>Marte</td>
<td>EUA</td>
</tr>
<tr>
<td></td>
<td>Aurora - Missão tripulada a Marte</td>
<td>Marte</td>
<td>UE</td>
</tr>
<tr>
<td></td>
<td>Base lunar habitada</td>
<td>Lua</td>
<td>Japão</td>
</tr>
</tbody>
</table>