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Abstract 
In this paper we will review recently uncovered trends in large airtanker (LAT) use in the U.S., explore 

implications, and discuss opportunities for improving efficiencies. First, we will review results of two studies 

attempting to characterize LAT use between initial attack (IA) and extended attack and/or large fire support 

(EA) missions. Collectively these studies identified significant LAT use for EA despite a history of prioritizing 

LATs for IA, and further identified potentially counterintuitive results where fires receiving LAT support during 

IA were more likely than not to escape IA efforts. These results suggest potential operational efficiencies in 

LAT use, and that improving success in IA efforts may be in part premised on reducing the time between ignition 

and LAT arrival on the fire. Here we examine trade-offs between LAT usage for IA and LAT unavailability for 

IA operations due to EA use. To do so we use a mathematical optimization model to identify efficient LAT air 

base location and deployment strategies. The model is designed to minimize the total deployment time of 

meeting LAT IA demand, with demand quantified as a function of a fire weather index. Results indicate, as 

expected, that model performance degrades as LATs are increasingly unavailable. Results further indicate 

substantial sensitivity of LAT air base location strategy to LAT availability, with potentially significant 

implications for air base staffing and capacity decisions, as well as fleet composition decisions. To conclude we 

will describe ongoing and future work analysing opportunities for efficiency gains in LAT management, 

focusing on the role of forecasting and optimization frameworks, as well as ongoing data collection and analysis 

regarding retardant drop conditions and outcomes. 
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 Introduction 

  

Large airtankers (LATs) are part of a broader suite of aviation assets including scoopers, helicopters, 

and single-engine airtankers, each with different operational capacities and limitations that can 

perform a wide variety of mission critical activities. LATs are prized for their large storage capacity 

and their ability to quickly travel to fire starts to facilitate containment during initial attack operations. 

Nominally, initial attack has been the primary role for LATs in federal fire suppression in the United 

States. Subsequently, optimization models supporting LAT fleet composition and location-allocation 

decisions are premised on the primary use of LATs being for initial attack (Fire Program Solutions 

2005; Keating et al. 2012). These analyses have great policy relevance, as the U.S. Forest Service is 

facing decisions about how best to address an aging fleet of contracted aircraft. Questions to consider 

include whether to contract or purchase aircraft, how many aircraft to contract/purchase, of which type, 

in what mix, with what equipment, and for what role. 

But is initial attack really the primary role for federally contracted LATs in the United States? And do 

the data exist to support comprehensive analysis of the costs and benefits of alternative fleet 

composition strategies? In 2013 the U.S. Government Accountability Office (GAO) released the 

findings of an investigation into federal agency actions regarding their fleet modernization and analysis 

efforts, which identified a need for improved data collection systems (GAO 2013). Similarly, our past 

and ongoing research has identified inadequacies and deficiencies in data collection, ranging from a 

limited ability to track and characterize LAT use at the national level, to an even more limited ability  
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to characterize the objectives and outcomes of individual drops at the incident level. Fine-scale 

evaluation of LAT drop effectiveness is the fundamental piece of information for supporting decisions 

related to choosing efficient combinations of aviation and ground-based firefighting resources and 

establishing appropriate flight mission objectives at the incident-level, for prepositioning and dispatch 

decisions across multiple incidents, and ultimately for arriving at efficient aviation resource mixes 

across fire seasons at the national level. Fortunately, recent work in the U.S. and elsewhere around the 

globe is providing new data and tools to better characterize the costs and benefits of aerial suppression 

efforts. 

Three recent studies are particularly relevant to analyses of aerial firefighting effectiveness and 

efficiency. First, Plucinski and Pastor (2013) outlined a set of criteria and methodologies for evaluating 

the effectiveness of aerial suppression drops, and applied their methods during field fire experiments 

performed in eastern South Australia. The authors identified information needs for environmental and 

delivery conditions to support evaluation of drop effectiveness, including characteristics related to the 

type of aircraft, the drop location, fire behaviour, and ground suppression activities. Questions related 

to evaluation of drop success include whether a drop objective was clearly defined, whether drop 

placement and coverage were sufficient, and whether spatiotemporal effects on fire behaviour met 

drop objectives. In the U.S. the ongoing Aerial Firefighting Use and Effectiveness study will ideally 

be able to provide much of this information, but in the interim critical knowledge gaps remain.  

Second, Thompson et al. (2013) examined the availability and sufficiency of U.S. federal agency 

aviation data to support cost-effectiveness analysis, finding that significant data quality issues and 

limited interoperability across data management systems precluded an in-depth analysis of the sort 

recommended by Plucinski and Pastor (2013). Instead, the authors as a first step summarized LAT 

flights according to mission type (initial attack (IA) versus extended attack and/or large fire support 

(EA)) across the years 2007-2010, using information on both the flight’s job code description, and fire 

size class at the time of the drop. Depending upon assumptions for how to group job codes, results 

indicated that somewhere between 6.6% and 48.1% of flights were used for IA operations. Fire size 

results similarly showed limited usage for IA (10.8%), and further indicated extensive use on very 

large fires. Nearly 35% of drops occurred on fires larger than 4,047 ha (10,000 ac), and nearly 23% of 

flights occurred on fires larger than 8,094 ha (20,000 ac). 

Third, in a more in-depth study, Calkin et al. (2014) linked spatially-explicit drop location data with 

fire occurrence and firefighting resource ordering records to better identify the period in the fire history 

when drops occurred as well as the resulting outcomes of fires that received drops during IA. The 

authors analysed LAT drops across 2010-2011, and results confirmed earlier work indicating extensive 

use of LATs on EA. In 2010, a relatively quiet fire season, 34.4% of all drops were used in EA; this 

increased to 50.9% in 2011. The number of drops per incident exhibited high variability, largely a 

reflection of heavy usage for significant events during EA operations, including multiple incidents 

with more than 75 drops. Results further indicated that drops during IA tended to be associated with 

incidents that escaped IA and transitioned into EA. In 2010, 67.5% of IA LAT use incidents eventually 

escaped, and this increased to 84.8% in 2011.  

Results of these two latter studies highlight possible inadequacies in contemporary LAT usage, as well 

as significant complexities in quantifying cost-effectiveness given limited understanding of the 

marginal contribution of LAT usage to reduced damage across of the spectrum of LAT drop objectives 

during EA operations. That the majority of overall drops occurred during EA operations suggests that 

LATs are “sticky” and that fire managers tend to retain LATs for use outside of what has historically 

been considered their most suitable role. EA LAT use could still be cost-effective under a range of 

circumstance, of course, but potentially comes at the cost of diverting resources from IA demands. 

Additionally, that a large majority of drops occurring during IA are associated with escaped wildfires 

suggests that fire managers are appropriately calling for LAT support on incidents with high escape 

potential, but also suggests inefficiencies in the positioning, dispatch, availability, and delivery of 
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LATs for IA operations.  The degree to which LAT use on EA can directly degrade IA operational 

efficiencies has yet to be rigorously quantified, however.  

In this paper, we rely on a formalized optimization framework to better understand trade-offs in LAT 

usage patterns, with the aim to generate information useful for future cost-effectiveness analyses. 

Specifically we build upon a resource allocation model tested on a select set of units managed by the 

California Department of Forestry and Fire Protection (Chow and Regan 2011). We develop a static 

allocation model where LATs are assigned to the same air base for the entire season, and focus on 

isolating the influence of systemic LAT unavailability for IA due to use for EA operations. In the 

following sections we introduce the reformulated optimization model along with a sensitivity analysis, 

present results, discuss implications, and offer recommendations for future research. 

 

 Model Formulation  

 

Our model expands upon a previously developed model by Chow and Regan (2011), and has 

similarities to facility location problems. The problem is defined as the allocation of LATs to air bases 

over the course of a fire season to minimize the cost (using travel time as a proxy) of deploying LATs 

to wildfires. The problem formulation is designed to recognize important features of LAT location and 

deployment, such as the potential demand for multiple LATs to respond to a wildfire, and the ability 

to co-locate multiple LATs at a given air base. Demand for LATs is dependent upon location-specific 

seasonal averages for the National Fire Danger Rating System’s Burning Index. Structurally, the 

problem considers a network of nodes (air bases) and arcs with fixed travel times between air bases. 

Model outputs include assignments of LAT air base locations as well as LAT deployment rules to 

cover LAT demand from other air bases. We expand upon this formulation by accounting for the 

possibility of LATs being unavailable for IA due to EA use, and explore how total deployment time 

changes with various LAT availability rates.  

 

Min         (1) 

s.t.        (2) 

        (3) 

         (4) 

   (5) 

Where 

Zij integer number of LATs at node j covering node i 

dij matrix of travel times from i to j 

Xj integer number of LATs based at node j 

ki minimum demand threshold for number of LATs covering node i 

γj LAT availability rate at node j 

P number of LATs 

 

Equation 1 minimizes the travel times of the closest tanker bases delivering LATs to demand nodes. 

Equation 2 limits the number of LATs that can be assigned to node i by the availability-weighted 

number of LATs at node j. Equation 3 forces assignment of the k closest available LATs to node i. 

Lastly, Equation 4 limits assignment of LATs to the total number of LATs in the fleet, and Equation 

5 ensures non-negativity.  

To examine the sensitivity of model performance to LAT availability, we first uniformly vary LAT 

unavailability rates in 0.05 increments from 0.05 to 1.00. We then consider variable LAT availability 

rates across air bases. As a simple rule we define air bases as low or high demand nodes (and 

therefore high or low availability nodes, respectively) based upon whether their demand levels are 

below or above the median demand across all air bases. We then vary the availability rates according 
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to three paired sets of (0.70, 0.90), (0.60, 0.80), and (0.50, 0.70), which correspond to average 

availability rates of 0.80, 0.70, and 0.60, respectively.  

Additionally we explore introducing penalties for otherwise infeasible solutions with unmet demand. 

To account for unmet demand in the model the objective function is updated to include penalty costs 

(Equation 6) and the constraint to meet LAT demand is updated to include a dummy variable for 

unmet demand (Equation 7). We explore three weights (1, 10, and 25) for the penalty that in effect 

act as a scaling parameter to convert unmet LAT demand into the equivalent deployment time. In 

practice, the ρ parameter could be based on the cumulative travel times of alternative firefighting 

resources necessary to achieve an equivalent level of firefighting production capacity. 

 

      (6) 

       (7) 

 

Where 

UDi unmet demand at node i 

ρj unmet demand penalty at node j 

 

For parameterization of the model we use the same set of demands and travel times for the test network 

applied by Chow and Regan (2011). This test case includes 20 LATs and 12 California Department of 

Forestry and Fire Protection air bases. Table 1 presents summary information on the demand levels 

and availability classifications we used. 

Table 1. Summary information on air bases in test network 

Air Base # 
Air Attack Base 

Name 
# of LATS Demand Level 

Availability 

Classification 

1 Hollister 2 4.16 High 

2 Chico 1 10.4 Low 

3 Fresno 1 9.8 Low 

4 Rohnerville 1 5.58 Low 

5 Sonoma 2 4.8 High 

6 Ukiah 2 6.2 Low 

7 Ramona 2 9.9 Low 

8 Hemet 2 5.12 High 

9 Redding 2 5.69 Low 

10 Paso Robles 2 5.47 High 

11 Columbia 2 5.18 High 

12 Porterville 1 4.06 High 

 

 Results 

 

Figure 1 displays how total deployment time varies with LAT availability, using the first model 

presented in Equations 1-5. As expected, total deployment time decreases as LAT availability 

increases, reaching an overall minimum of 31.46 at full availability. Results are not presented below 

an availability rate of 0.55 because solutions are infeasible. At the rate of 0.55 total deployment time 

(63.64) is more than double that of full availability. 

Figure 2 instead focuses on LAT air base assignments, summarizing how these assignments can vary 

with LAT availability. The figure compares the number of LAT assignments per air base under the 

baseline (full availability) scenario to the mean number of assignments across availability rates ranging 

from 0.55 – 0.95. Results indicate substantial variation in LAT air base assignments, suggesting a high 
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degree of sensitivity to LAT availability. Particular prominent differences are observed for air bases 2 

and 3 (fewer assignments under baseline scenario) as well as air base 8 (more assignments under 

baseline scenario). Optimal LAT air base locations also differ significantly from current (as of 2011) 

actual LAT assignments (see Table 1). 

 

 

Figure 1. Total deployment time as a function of LAT availability 

Table 2 compares total deployment times and LAT air base assignments across six LAT availability 

scenarios – those for uniform availability rates of 0.80, 0.70, and 0.60, as well as the low/high paired 

sets. At least over these availability rate combinations, the model performs better with variable 

availability rates, and in general shows substantial sensitivity to LAT availability. This is because the 

model preferentially selects air bases with low demand levels and therefore higher availability rates 

(see Table 1). For instance compare the number of LAT assignments to air bases 2 and 3 under uniform 

and variable availability rates.  
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Figure 2. Number of LAT assignments per air base across different LAT availability scenarios 

 

Table 2. Total deployment times and LAT air base assignments under different LAT availability rate scenarios 

Air Base # 

Uniform LAT Availability Rate 

Across Air Bases 

Variable LAT Availability Rate 

Across Air Bases 

0.80 0.70 0.60 0.70, 0.90 0.60, 0.80 0.50, 0.70 

Total Deployment Times 

41.5 46.27 49.45 39.59 42.68 47.5 

Number of LAT Assignments per Air Base 

1 0 0 0 0 0 0 

2 5 10 5 0 0 0 

3 5 10 5 0 0 0 

4 0 0 0 0 0 0 

5 0 0 5 8 5 10 

6 3 0 0 0 0 0 

7 0 0 0 0 0 0 

8 4 0 0 6 5 0 

9 0 0 0 0 0 0 

10 0 0 0 0 0 0 

11 0 0 0 0 5 0 

12 3 0 5 6 5 10 
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Figures 3-5 incorporate unmet demand based on the updated model incorporating Equations 6 and 7. 

Figure 3 displays total penalty-adjusted deployment times as a function of LAT availability, using a 

log-scale to better differentiate results at the higher availability rates. At rates below 0.55, where the 

original model becomes infeasible, objective functions with higher penalty rates begin to climb more 

steeply. Over the range 0.55 to full availability, results for the penalty weight of 25 are identical to 

results presented in Figure 1. Where the penalty for unmet demand is only 1, the solutions never fully 

meet all demand because it is cheaper to incur the penalty than to travel to other air bases. Figure 4 

further illustrates this relationship between unmet demand and deployment time where the penalty is 

1, showing that unmet demand never drops to zero. Neither does deployment time exhibit a negative 

slope after availability of 0.55 (see Figure 1), again because the gains in availability are less important 

relative to the low penalty of not meeting demand. By contrast, Figure 5 shows the same relationships 

but where the penalty is 10. Travel time rises and unmet demand drops steeply until roughly the point 

where the problem becomes feasible. From that point forward deployment time continues to drop as 

availability increases, consistent with Figure 1. 

 

 

Figure 3. Total penalty-adjusted deployment time as a function of LAT availability 

 

 Discussion 

 

We reviewed recent research indicating significantly different LAT usage patterns than has been 

typically assumed within LAT location and deployment optimization efforts. Specifically these models 

have assumed near total use for IA, whereas recent evidence suggests EA use can comprise a 

significant share of overall use. Additionally, recent research indicating low IA success rates on fires 

that receive LAT support during IA suggest possible inefficiencies in LAT usage. In response we 
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augmented a mathematical optimization model to explore trade-offs between IA and EA use, and 

examined model sensitivity to LAT unavailability for IA efforts.  

 

 

Figure 4. Unmet demand and deployment time as a function of LAT availability, penalty = 1 

 

Figure 5. Unmet demand and deployment time as a function of LAT availability, penalty = 10 
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Our results indicated that model performance degrades as LATs become less available, and that results 

are highly sensitive to LAT unavailability. This sensitivity is particularly evident when examining 

optimal LAT air base locations (the same is true for optimal LAT deployment rules, not provided here 

for economy of presentation). These results could carry significant implications for efficient updating 

of LAT location and deployment strategies, especially when considering additional real-world factors 

like staffing needs and air base capacities. Our results also lead to questions of how changes in fleet 

size could mitigate or exacerbate potential IA/EA trade-offs. A more complete model would ideally 

seek to better compare with a common metric the costs and benefits of LAT use for IA and EA rather 

than focus on degraded IA performance, although data gaps still present significant challenges to 

building such a model. 

One immediate extension to our model is to consider a dynamic model that can relocate LATs on a 

daily basis in response to observed and/or predicted fire activity (Chow and Regan 2011). This 

extension requires a more complicated framework and increased computational demands, a verifiable 

ability to forecast future aerial firefighting needs, and an approach to translate relocation costs to the 

value of improved deployment time considering factors such as avoided damages. Further, 

incorporating LAT unavailability into the model on a daily basis would require a more complicated 

model to characterize LAT unavailability due to EA support. However, this approach can better 

capture the nature of a truly dynamic suppression organization that makes responsive location and 

relocation decisions. This modelling approach may also better illustrate opportunities for efficiency 

gains relative to current practice.  

Additional future modelling efforts could consider variation in demand in addition to supply, could 

explore probabilistic efforts to better capture possible pulses of high IA activity, and adopt combined 

simulation-optimization efforts. Additional research to calibrate and parameterize these models is 

necessary as well. These efforts could seek to quantify the predictive skill of fire weather forecasts as 

well as the degree to which these forecasts influence suppression resource prepositioning. Critically, 

research efforts will need to better characterize the benefits and costs of LAT usage to move beyond 

the simplistic model based on travel time alone. Thus, beyond modelling efforts, continued empirical 

analysis of LAT usage, fire outcomes, and particularly drop effectiveness are warranted. 
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